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Introduction

How do I (the robot) go there?

Model of the Robot and 

Environment

Motion Planning

with iLQR

Sensing Motion Control and Execution

Requires Goalstate:

- i.e. hand-engineered

- i.e. via a cost function
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Introduction

How do I (the robot) go there?

Model of the Robot and 

Environment

Motion Planning

Requires Goalstate:

- i.e. hand-engineered

- i.e. via a cost function

Sensing Motion Control and Execution

What if the model of the robot and environment is hard to 

describe (or unknown)?

Think about flexible objects! Think about contact-situations!
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Dynamics of unstructured environments
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Motivation

Real-World Dynamics are Complex!

Dynamics of 

contacts

Dynamics of

flexible objects

Dynamics of 

unstructured environments

Often dynamic models

exist

Dynamic models 

usually do not exist

Dynamics of

a car
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Introduction

Trajectory Optimization

• Trajectory Optimization: Calculates optimal sequence of actions using cost-function and dynamics

• Today: How can optimal action sequences be calculated if a dynamic model does not exist?

• Today we learn an algorithm based on

 Learning a global dynamic model (“model-based reinforcement learning”)

 Learning a local dynamic model

min
𝐮1,…,𝐮𝑇

෍

𝑡=1

𝑇

𝑐 𝐱𝑡, 𝐮𝑡 𝐱𝑡 = 𝑓(𝐱𝑡−1,𝐮𝑡−1)s.t.
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This weeks topic!

Robots as an Example for Intelligent Machines

What if the model of the robot and environment is hard to describe (or unknown)?

Model-based RL:

- Learn to predict next 

state (using a dynamic 

model): 𝑃(𝑠′|𝑠, 𝑎)
- Learn to predict 

immediate reward 

𝑃(𝑟′|𝑠, 𝑎) (we assume 

to have this 

information)

Model-free RL:

- Learn to predict value: 

V(s) or Q(s, a)

𝑠: state

𝑎: action

𝑟: reward
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Content

I. Modelbased Reinforcement Learning

I. Learning of dynamic models

II. Learning of dynamic models and policies

II. Representing a dynamic model

III. Global and local dynamic model

IV. Learning with local dynamic models with „Trust Regions“
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Motivation

Why do we want to learn the dynamics?

Usual procedure: Differentiate via Backpropagation and optimize (i.e. iLQR)

Requires:

min
𝐮1,…,𝐮𝑇

෍

𝑡=1

𝑇

𝑐 𝐱𝑡, 𝐮𝑡 𝐱𝑡 = 𝑓(𝐱𝑡−1,𝐮𝑡−1)s.t.

min
𝐮1,…,𝐮𝑇

𝑐 𝐱1, 𝐮1 + 𝑐 𝑓 𝐱1, 𝐮1 , 𝐮2 +⋯+ 𝑐(𝑓 𝑓 … … , 𝐮𝑇)

𝜕𝑓

𝜕𝐱𝑡
,
𝜕𝑓

𝜕𝐮𝑡
,
𝜕𝑐

𝜕𝐱𝑡
,
𝜕𝑐

𝜕𝐮𝑡
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Motivation

Why do we want to learn the dynamics?

• If 𝐱𝑡+1 = 𝑓(𝐱𝑡,𝐮𝑡) is known, we can do trajectory optimization

 In the stochastic case p(𝐱𝑡+1|𝐱𝑡,𝐮𝑡)

Learn 𝑓(𝐱𝑡,𝐮𝑡) with subsequent backpropagation (i.e. iLQR)

1. Execute initial policy 𝜋0(𝐮𝑡|𝐱𝑡) (i.e. a random policy) and collect data 𝒟 = { 𝐱, 𝐮, 𝐱′ 𝑖}

2. Learn dynamics 𝑓 𝐱,𝐮 that minimizes σ𝑖 𝑓 𝐱𝒊,𝐮𝒊 − 𝐱𝑖
′ 2

3. Backpropagate 𝑓 𝐱,𝐮 and calculate sequence of actions (i.e. iLQR)

Modelbased Reinforcement Learning Version 0.5
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Learning Dynamic Models

Does Version 0.5 work?

• Traditional system identification uses this method (control theory)

• Initial policy must be chosen with caution

• Version 0.5 is very effective

 If a representation of the dynamics based on physical laws exists

 If only a few parameters must be learned

YES!(often)
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Learning Dynamic Models

Does Version 0.5 work?

NO!(in general)

𝜋0(𝐮𝑡|𝐱𝑡)

Go to the right to get higher!

→ 𝑝𝜋0(𝐱𝑡)

𝜋𝑓(𝐮𝑡|𝐱𝑡)

→ 𝑝𝜋𝑓(𝐱𝑡)

1. Execute initial policy 𝜋0(𝐮𝑡|𝐱𝑡) (i.e. a random policy) and collect data 𝒟 = { 𝐱, 𝐮, 𝐱′ 𝑖}

2. Learn dynamics 𝑓 𝐱,𝐮 that minimizes σ𝑖 𝑓 𝐱𝒊,𝐮𝒊 − 𝐱𝑖
′ 2

3. Backpropagate 𝑓 𝐱,𝐮 and calculate sequence of actions (i.e. iLQR)  𝜋𝑓(u𝑡|x𝑡)

𝑝𝜋0 𝐱𝑡 ≠ 𝑝𝜋𝑓(𝐱𝑡)

(Distribution Mismatch Problem)

Distribution Mistmatch Problem increases if expressive classes 

of models are used (i.e. neural networks)
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Learning Dynamic Models

Can we do better?

Can we make 𝑝𝜋0 𝐱𝑡 = 𝑝𝜋𝑓 𝐱𝑡 ?

1. Execute initial policy 𝜋0(𝐮𝑡|𝐱𝑡) (i.e. a random policy) and collect data 𝒟 = { 𝐱, 𝐮, 𝐱′ 𝑖}

2. Learn dynamics 𝑓 𝐱,𝐮 that minimizesLearn dynamics 𝑓 𝐱,𝐮 that minimizes σ𝑖 𝑓 𝐱𝒊,𝐮𝒊 − 𝐱𝑖
′ 2

3. Backpropagate 𝑓 𝐱,𝐮 and calculate sequence of actions (i.e. iLQR)

4. Execute those actions and add the resulting data { 𝐱, 𝐮, 𝐱′ 𝑖} to 𝒟

Modellbasiertes Reinforcement Learning Version 1.0

Need to collect data from 𝑝𝜋𝑓 𝐱𝑡 !
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Learning Dynamic Models

What happens if the dynamic models contains little error?

∆𝑡 = 20min
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Learning Dynamic Models

Can we do better?

1. Execute initial policy 𝜋0(𝐮𝑡|𝐱𝑡) (i.e. a random policy) and collect data 𝒟 = { 𝐱, 𝐮, 𝐱′ 𝑖}

2. Learn dynamics 𝑓 𝐱,𝐮 that minimizesLearn dynamics 𝑓 𝐱,𝐮 that minimizes σ𝑖 𝑓 𝐱𝒊,𝐮𝒊 − 𝐱𝑖
′ 2

3. Backpropagate 𝑓 𝐱,𝐮 and calculate sequence of actions (i.e. iLQR)

4. Execute the first planned action, observe resulting state 𝐱′(MPC)

5. Append 𝐱, 𝐮, 𝐱′ to dataset 𝒟

Modellbasiertes Reinforcement Learning Version 1.5
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Learning Dynamic Models

Summary

• Version 0.5: collect random samples, train dynamics, plan

 Pro: simple, no iterative procedure

 Con: distribution mismatch problem

• Version 1.0: iteratively collect data, replan, collect data

 Pro: simple, solves distribution mismatch

 Con: open loop plan might perform poorly, exp. in stochastic domains

• Version 1.5: iteratively collect data using MPC (replan in each step)

 Pro: robust to small model errors

 Con: comoputationally expensive, but have planning algorithm available
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Content

I. Modelbased Reinforcement Learning

I. Learning of dynamic models

II. Learning of dynamic models and policies

II. Representing a dynamic model

III. Global and local dynamic model

IV. Learning with local dynamic models with „Trust Regions“
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What kind of models can we use?

GP with input (𝐱, 𝐮) and output 𝐱’

Pro:  very data-efficient

Con: not great with non-smooth dynamics

Con: very slow when dataset is big

Input is 𝐱, 𝐮 , output ist 𝐱’

Pro:  very expressive, can use lots of data

Con: not so great I low data regimes

Gaussian process Neural Network Gaussian Mixture Model

GMM over 𝐱, 𝐮, 𝐱′ tuples

Train on 𝐱, 𝐮, 𝐱′ , condition to get 𝑝 𝐱′|𝐱, 𝐮

For i’th mixture element, 𝑝𝑖(𝐱, 𝐮) gives 

region where the mode 𝑝𝑖(𝐱
′|𝐱, 𝐮) holds

Pro:  very expressive, if the dynamics can 

be assumed as piecewise linear
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Representation of Dynamic Models



Summerschool | IMA/ZLW & IfU

16.08.2017  |  www.ima-zlw-ifu.rwth-aachen.de21

Content

I. Modelbased Reinforcement Learning

I. Learning of dynamic models

II. Learning of dynamic models and policies

II. Representing a dynamic model

III. Global and local dynamic model

IV. Learning with local dynamic models with „Trust Regions“
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Global Dynamic Models

Challenges

• Planner will seek out regions where the model is erroneously optimistic

• Need to find a very good model in most of the state space to converge on a good 

solution

Example: Global dynamic model 𝑓 𝐱𝑡, 𝐮𝑡 is represented by a neural network

1. Execute initial policy 𝜋_0 (𝐮_𝑡 |𝐱_𝑡) (i.e. a random policy) and collect data 𝒟={(𝐱,𝐮,𝐱^′ )_𝑖}

2. Learn dynamics 𝑓 𝐱,𝐮 that minimizesLearn dynamics 𝑓 𝐱,𝐮 that minimizes σ𝑖 𝑓 𝐱𝒊,𝐮𝒊 − 𝐱𝑖
′ 2

3. Backpropagate 𝑓 𝐱,𝐮 and calculate sequence of actions (i.e. iLQR)

4. Execute those actions and add the resulting data { 𝐱, 𝐮, 𝐱′ 𝑖} to 𝒟

Modellbasiertes Reinforcement Learning Version 1.0



Summerschool | IMA/ZLW & IfU

16.08.2017  |  www.ima-zlw-ifu.rwth-aachen.de23

Global Dynamic Models

The trouble with global models

• Planner will seek out regions where the model is erroneously optimistic

• Need to find a very good model in most of the state space to converge on a good solution

• In some tasks, the model is much more complex than the policy

policy

dynamics
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Local models

Motivation

Usual story: differentiate via backpropagation and optimize (i.e. iLQR)

need:

min
𝐮1,…,𝐮𝑇

෍

𝑡=1

𝑇

𝑐 𝐱𝑡, 𝐮𝑡 𝐱𝑡 = 𝑓(𝐱𝑡−1,𝐮𝑡−1)s.t.

min
𝐮1,…,𝐮𝑇

𝑐 𝐱1, 𝐮1 + 𝑐 𝑓 𝐱1, 𝐮1 , 𝐮2 +⋯+ 𝑐(𝑓 𝑓 … … , 𝐮𝑇)

𝜕𝑓

𝜕𝐱𝑡
,
𝜕𝑓

𝜕𝐮𝑡
,
𝜕𝑐

𝜕𝐱𝑡
,
𝜕𝑐

𝜕𝐮𝑡



Summerschool | IMA/ZLW & IfU

16.08.2017  |  www.ima-zlw-ifu.rwth-aachen.de25

Local models

Approach

need:

idea: just fit 
𝜕𝑓

𝜕𝐱𝑡
,
𝜕𝑓

𝜕𝐮𝑡
around current trajectory or policy

𝜕𝑓

𝜕𝐱𝑡
,
𝜕𝑓

𝜕𝐮𝑡
,
𝜕𝑐

𝜕𝐱𝑡
,
𝜕𝑐

𝜕𝐮𝑡

𝑝(𝐮𝑡|𝐱𝑡) – time-varying linear-Gaussian controller –

can execute on the robot and produces 

trajectory distribution
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Local models

Learning a policy

run 𝑝(𝐮𝑡|𝐱𝑡) on robot,

collect 𝒟= {𝜏𝑖}

Linearize local dynamic

models 𝑝(𝐱𝑡+1|𝐱𝑡, 𝐮𝑡)

{𝜏𝑖}

Optimize

𝑝(𝐮𝑡|𝐱𝑡)
subject to 

cost-function

Next 

iteration

𝑝 𝐱𝑡+1 𝐱𝑡, 𝐮𝑡 = 𝒩(𝑓 𝐱𝑡, 𝐮𝑡 , Σ)

𝑓 𝐱𝑡, 𝐮𝑡 ≈ 𝐀𝑡𝐱𝑡 + 𝐁𝑡𝐮𝑡

𝐀𝑡 =
𝜕𝑓

𝜕𝐱𝑡
𝐁𝑡 =

𝜕𝑓

𝜕𝐮𝑡
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Local models

Timedependent Linear Gaussian Controller

Set 𝚺𝑡 = 𝐐𝐮𝑡,𝐮𝑡
−1

𝑄(𝐱𝑡 , 𝐮𝑡) is the cost to go: total cost we get after taking an action 𝐮𝑡

𝑝 𝐮𝑡 𝐱𝑡 = 𝒩 𝐊𝑡(𝐱𝑡 − ො𝐱𝑡 + 𝐤𝑡 + ෝ𝐮𝑡, 𝚺𝑡)

𝑄 𝐱𝑡 , 𝐮𝑡 = const +
1

2

𝐱𝑡
𝐮𝑡

𝑇

𝐐𝑡

𝐱𝑡
𝐮𝑡

+
𝐱𝑡
𝐮𝑡

𝑇

𝐪𝑡

𝐐𝐮𝑡,𝐮𝑡 is big, if changing 𝐮𝑡
changes the Q-value a lot!

If 𝐮𝑡 changes Q-value a lot, don’t 

vary 𝐮𝑡 so much. Exploration 

noise 𝚺𝑡 must be low

iLQR produces: ො𝐱𝑡, ෝ𝐮𝑡, 𝐊𝑡, 𝐤𝑡

Führe 𝑝(𝐮𝑡 |𝐱𝑡) auf dem

Roboter aus

Linearisiere lokale 

Dynamikmodelle 

𝑝(𝐱𝑡+1|𝐱𝑡 , 𝐮𝑡)

{𝜏𝑖}

Optimiere 

𝑝(𝐮𝑡 |𝐱𝑡)
bzgl. Kosten-

funktion

run 𝑝(𝐮𝑡|𝐱𝑡) on robot,

collect 𝒟 = {𝜏𝑖}
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Local models

Timedependent Linear Gaussian Controller

Set 𝚺𝑡 = 𝐐𝐮𝑡,𝐮𝑡
−1

Standard LQR solves 

𝑝 𝐮𝑡 𝐱𝑡 = 𝒩 𝐊𝑡(𝐱𝑡 − ො𝐱𝑡 + 𝐤𝑡 + ෝ𝐮𝑡, 𝚺𝑡)

Linear-Gaussian solution solves 

iLQR produces: ො𝐱𝑡, ෝ𝐮𝑡, 𝐊𝑡, 𝐤𝑡

Führe 𝑝(𝐮𝑡 |𝐱𝑡) auf dem

Roboter aus

Linearisiere lokale 

Dynamikmodelle 

𝑝(𝐱𝑡+1|𝐱𝑡 , 𝐮𝑡)

{𝜏𝑖}

Optimiere 

𝑝(𝐮𝑡 |𝐱𝑡)
bzgl. Kosten-

funktion

run 𝑝(𝐮𝑡|𝐱𝑡) on robot,

collect 𝒟 = {𝜏𝑖}

Maximum Entropy: act as randomly as possible while minimizing cost

 Entropy: A measure for the average information content

min
𝐮1,…,𝐮𝑇

෍

𝑡=1

𝑇

𝑐 𝐱𝑡, 𝐮𝑡

min
𝐮1,…,𝐮𝑇

෍

𝑡=1

𝑇

𝐸[𝑐 𝐱𝑡, 𝐮𝑡 −ℋ(𝑝 𝐮𝑡 𝐱𝑡 )]



Summerschool | IMA/ZLW & IfU

16.08.2017  |  www.ima-zlw-ifu.rwth-aachen.de29

Local models

Linearize local dynamics

𝑝 𝐱𝑡+1 𝐱𝑡, 𝐮𝑡 = 𝒩(𝐀𝑡𝐱𝑡 + 𝐁𝑡𝐮𝑡 + 𝐜𝑡, 𝐍𝑡) 𝐀𝑡 ≈
𝜕𝑓

𝜕𝐱𝑡
𝐁𝑡 ≈

𝜕𝑓

𝜕𝐮𝑡

{ 𝐱𝑡, 𝐮𝑡, 𝐱𝑡+1 𝑖}

Version 1.0: Linearize 𝑝(𝐱𝑡+1|𝐱𝑡, 𝐮𝑡) at each time step using linear regression

Can we do better?

Version 2.0: Linearize 𝑝(𝐱𝑡+1|𝐱𝑡, 𝐮𝑡) using Bayesian linear regression

 Bayesian linear regression uses prior: 𝑝(𝐱𝑡, 𝐮𝑡)𝑝 𝐱𝑡+1 𝐱𝑡, 𝐮𝑡 = 𝑝(𝐱𝑡, 𝐮𝑡, 𝐱𝑡+1)

 Use your favourite global model as a prior (GP, deep net, GMM)

Führe 𝑝(𝐮𝑡 |𝐱𝑡) auf dem

Roboter aus

Linearisiere lokale 

Dynamikmodelle 

𝑝(𝐱𝑡+1|𝐱𝑡 , 𝐮𝑡)

{𝜏𝑖}

Optimiere 

𝑝(𝐮𝑡 |𝐱𝑡)
bzgl. Kosten-

funktion

Linearize local dynamic

models

𝑝(𝐱𝑡+1|𝐱𝑡, 𝐮𝑡)
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Local models

How to stay close to old controller? Führe 𝑝(𝐮𝑡 |𝐱𝑡) auf dem

Roboter aus

Linearisiere lokale 

Dynamikmodelle 

𝑝(𝐱𝑡+1|𝐱𝑡 , 𝐮𝑡)

{𝜏𝑖}

Optimiere 

𝑝(𝐮𝑡 |𝐱𝑡)
bzgl. Kosten-

funktion
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Local models

How to stay close to old controller?

𝑝 𝐮𝑡 𝐱𝑡 = 𝒩 𝐊𝑡(𝐱𝑡 − ො𝐱𝑡 + 𝐤𝑡 + ෝ𝐮𝑡, 𝚺𝑡)

𝑝(𝜏) = 𝑝(𝐱𝟏)ෑ

𝑡=1

𝑇

𝑝 𝐮𝑡 𝐱𝑡 𝑝(𝐱𝑡+1|𝐱𝑡, 𝐮𝑡)

New trajectory distribution 𝑝(𝜏) must be similar to the old one ҧ𝑝(𝜏)

If trajectory distribution is close, the dynamics will be close too!

What does “close” mean? 

Kullback-Leibler divergence: 𝐷𝐾𝐿( |𝑝(𝜏) | ҧ𝑝(𝜏)) < 𝜀 From here comes a lot of mathematics!

Führe 𝑝(𝐮𝑡 |𝐱𝑡) auf dem

Roboter aus

Linearisiere lokale 

Dynamikmodelle 

𝑝(𝐱𝑡+1|𝐱𝑡 , 𝐮𝑡)

{𝜏𝑖}

Optimiere 

𝑝(𝐮𝑡 |𝐱𝑡)
bzgl. Kosten-

funktion

Optimize

𝑝(𝐮𝑡|𝐱𝑡)
subject to 

cost-function
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Its your turn!

Visit the website and implement it!
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Introduction to the tasks

Tasks for today and tomorrow

• Task 1: 

 Implement an LQR Backward and Forward pass

 Try to understand it!

 Test it with our test method

• Task 2:

 Implement linearization of the dynamic model

 Try to understand it!

 Test it with our test-method

 Test it on the Box2D Scenario

• Task 3:

 Test it with Kinova Jaco 2 in simulation

 Adjust cost function

• Task 4: 

 Test it with real Kinova Jaco 2

 Adjust cost function
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Task 1 – Installation procedure

Download source code (do it in your home directory: cd ~):
git clone https://github.com/philippente/ss2017_task1_lqr.git

Edit .bashrc to set environment variables:
gedit ~/.bashrc

At the end of file, the lines should look like this:
source /opt/ros/indigo/setup.bash

source /home/useradmin/catkin_ws/devel/setup.bash

export

ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:/opt/ros/indigo/share:/opt/ros/indigo/stacks:/home/useradmin/ss2017_task1_lqr:/home/usera

dmin/ss2017_task1_lqr/src/gps_agent_pkg

Check if the blue part of the source folder and ROS_PACKAGE_PATH is correct!

Then save it and close it. Source the .bashrc (load the environment variables):
source ~/.bashrc

Now, compile some stuff:
cd ss2017_task1_lqr

sh compile_proto.sh

cd /src/gps_agent_pkg

cmake .

make -j

https://github.com/philippente/ss2017_task1_lqr.git
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Task 1 – Installation procedure

• Open PyCharm

• Import the folder ss2017_task1_lqr as a new project

• Open within PyCharm: python/gps/algorithm/algorithm_traj_opt.py

• Task: Implement the forward and backward pass of an LQR! Look at the website for advices`: https://goo.gl/X5twgi

• You can test your implementation with a little test program

 using a terminal, open the directory ss2017_task1_lqr

 Start the program with: python python/gps/lqr_test.py

 Was it successful?



Thanks for your attention!
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Gaussians

• Univariate Gaussian

• Multivariate Gaussian

• Law of Total Probability

• Conditioning (Bayes’ rule)

• Disclaimer: lots of lienar algebra in next few lectures. In fact, pretty much all computations with Gaussians will be reduced to 

linear algebra!


