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Robots as an Example for Intelligent Machines

How do | (the robot) go there?

Model of the Robot and
Environment

Sensing

Motion Control and Execution

IR Emitter Color Sensor Y4} :
IR Depth Sengoi'~”
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Motion Planning: Introduction

What is Motion Planning?

Determining where to move without hit obstacles.

i

5 Summer School — Robotics | Haoming Zhang | IMA/ZLW & IfU
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Motion Planning: Introduction

Piano Mover‘s Problem for you

Move the Piano in your house ,,peacefully® from one room to another.
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Motion Planning: Introduction

Piano Mover ‘s Problem as a robot
= Problem Formulation: Given
— A workspace W of R? or R?
— A set of (dynamical or statical)
obstacles {0;, ..., 0,,}
— A start position g;,,;; and
a goal position q,,q;
— Geometry and kinematics of the robot

= Problem Formulation: Find a path
from qni: 10 q40q; that:

— is (self-) collision-free
— satisfies (joint, velocity, acceleration) limits

7 Summer School — Robotics | Haoming Zhang | IMA/ZLW & IfU
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Motion Planning: Introduction

Goal of Motion Planning
= Compute motion strategies, e.g.:
— geometric paths
— time-parameterized trajectories
— seqguence of sensor-based motion commands

= Achieve high-level goals, e.g.:
— Goto A without colliding with obstacles
— Assemble product P
— Build a map of the hallway
— Find and track the target

8 Summer School — Robotics | Haoming Zhang | IMA/ZLW & IfU
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"HIS PATH-PLANNING MAY BE

SUB-OPTIMAL,

BUT IT'S GOT FLAIR."

[Source: Willow Garage]



Motion Planning: Introduction

Planning involves

= State Space 1
- Tlme fill haa P o 'J.:J'Tac‘krgsr!
= Action

Initial and goal state
A Plan
A Criterion

J
/
]
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[Source: V-REP, coppeliarobotics] M ‘ ‘ RWIH
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Motion Planning: Introduction

Some Motion Planning Tasks

Start

Y-Pixel

Goal

[Source: http://www.societyofrobots.com/robot_arm_tutorial.shtml]

[Source: https://www.youtube.com/watch?v=UuZWCVxWAsI]
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Motion Planning: Introduction

Planning involves: Is it easy?
= State Space

= Time

Action

Initial and goal state
A Plan

A Criterion

[Source: https://www.youtube.com/watch?v=UTbiAu8IXas]

o B B B
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Motion Planning: Configuration Space

Context of plan: Workspaces and Configuration Spaces
= Definition of Spaces:
— Workspace W € R™ : Environment in which robot operates
— Obstacle space 0 € R™: Already occupied spaces of the world
— Free Space Wr,.. € R™: Unoccupied space of the world
= Projection of robot and workspace into a high dimensional configuration space

— Configuration g : A minimal set of variables that describes the position of each rigid body component of a robot, e.g. joint positions and
velocities

— Configuration space Cy,,. : A set of possible configurations the robot could take
—~ C-space obstacle region C,s: Cops = {q € Copace|B(q) N O # 0}
— C-space without collision Crree: Crree = Cspace \Cobs

= \ W72 Ginit
NN 2 ——
L) — - A oa 1
AGinit) guet) configuration map B
configuration space 2 workspace W
Workspace Configuration Space
13 Summer School — Robotics | Haoming Zhang | IMA/ZLW & IfU M ‘ ’
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Motion Planning: Configuration Space

Context of plan: Workspace and Configuration Space

Al dmensions are metnic (mm| and for refierence only.
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Motion Planning: Configuration Space

Context of plan: Workspace and Configuration Space
= Small quiz:

— Configuration?

— Free Configuration space?

Free Workspace Free Configuration space

-
e ~
; /\
v
! 1
1
\ '
N P
. .
‘--"
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Motion Planning: Configuration Space

Motion Planning Pipeline within Cg, .

transform workspace
into configuration
space

7 S

connect collision-
free state
transistions

S;
Ss Ss)
Se

discretize
configuration
space
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Motion Planning: Classical Approaches

Sensor-based Planning: the Bug Algorithms
= Problem setup:

— A workspace W of R* or R?
— Some obstacles {0y, ..., 0,,} O
— A state position g;,;; and a goal position g4,

— Arobot described by a moving point (no size)

_ Pgoal O
= Assumptions /2

— Robot Assumptions:
Knows the direction towards the goal and distance to goal
Does not know anything about the obstacles (without map)
- A (contact) Sensor to detect obstacles Pstart
Move either in a straight line or follow an obstacle boundary

Limited memory to store distances and angles

. ¥
— Envionment Assumptions: W

The workspace is bounded
Finite number of obstacles
Start and goal position in free Workspace Wy,

L]
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Motion Planning: Classical Approaches

Sensor-based Planning: the Bug Algorithms

= Bug O:
Algorithm: Bug 0

while not at goal:
move towards the goal
if hit an obstacle:
while not able to move towards the goal:
follow the obstacle’s boundary moving to the left

= Bug 1: =
Algorithm: Bug 1 Pgoal

while not at goal:
move towards the goal
if hit an obstacle: T‘
circumnavigate it.
store in memory the minimum distance from the obstacle boundary to the goal
follow the boundary back to the boundary point with minimum distance to goal

Pstart

= Bug 2:

Algorithm: Bug 2

while not at goal:
move towards the goal (along the start — goal line)
if hit an obstacle:
follow the boundary (either left or right)
leave the boundary until you encounter the start - goal line

Summer School — Robotics | Haoming Zhang | IMA/ZLW & IfU
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Motion Planning: Classical Approaches

Sensor-based Planning: the Bug Algorithms, could they work well?

= Bug O

Pstart

Pgoal

r

c; Pgoal

= Bug 1

Pgoal

Bug 1

Pgaal

L

Bug 2

;‘:? [ —
Pstart

start
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Motion Planning: Classical Approaches

Potential-based Planning
= Problem setup:

— A workspace W of R* or R?
— Some obstacles {0y, ..., 0,,} Ol
— A state position g;,;; and a goal position g4,
— Arobot described by a moving point (no size) O

Pgoal 02

= Assumptions
— Robot Assumptions:
Knows the direction towards the goal and distance to goal
Know something about the obstacles (map) o
Pstart

— Envionment Assumptions:
The workspace is bounded .
Finite number of obstacles 4

Start and goal position in free Workspace Wy,

Summer School — Robotics | Haoming Zhang | IMA/ZLW & IfU M ‘ ‘
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Motion Planning: Classical Approaches

Potential-based Planning: Idea
= No explicit representation of the Configuration space

= Potential function:
— Diffentiable real-valued function U: R™ - R
— Motion Direction towards to the goal using gradient:

U ou 1"
VU(q) =DU(q)" = a—ql(q), ---,E(q)]

— Gradient descebt: ,downhill*; ¢ = =VU(q)
Attractive / Repulsive potential

U(q) = Uatt(Q) + Urep (Q)
Attractive potential: w.r.t. Goal, e.g. U, = %Edz(q, dgoat)

2
Repulsive potential: w.r.t. Obstacles, e.g. U,., = %77 (ﬁq) — Qi)

Summer School — Robotics | Haoming Zhang | IMA/ZLW & IfU
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Motion Planning: Classical Approaches

Potential-based Planning: Illustration |

23 Summer School — Robotics | Haoming Zhang | IMA/ZLW & IfU
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Motion Planning: Classical Approaches

Potential-based Planning: Illustration Il

101

8t

10+

-10 -5 0
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Motion Planning: Classical Approaches

Cell Decompositions
= Problem setup:

— A workspace W of R* or R?
— Some obstacles {0y, ..., 0,,} Ol
— A state position g;,;; and a goal position g4,
— Arobot described by a moving point (no size) O

Pgoal 02

= Assumptions
— Robot Assumptions:
Knows the direction towards the goal and distance to goal
Know the workspace and obstacles (map) o
Pstart

— Envionment Assumptions:
The workspace is bounded .
Finite number of obstacles 4

Start and goal position in free Workspace Wy,
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Motion Planning: Classical Approaches

Cell Decompositions: Idea
= Decompose the free space into simple cells

= Represent the connectivity of the free space by the adjacency graph of cells
= Decomposition into e.g. Triangles and Trapezoids P

Algorithm: The roadmap-from-decomposition algorithm

Input: the trapezoidation of a polygon
Output: a roadmap

for each trapezoid:

label the center of each trapezoid with the symbol ¢ Q
label the midpoint of each vertical separating segment with the symbol ‘
]

connect the center to all the midpoints in the trapezoid
return the roadmap consisting of centers and connections between them through midpoints

Pyoal
‘o

F‘g,m]
m]

-

O
Pstart

E<i

Pgoal
O

.P.‘ﬂ.-'ll'l.

Pstart

26
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Motion Planning: Classical Approaches

Roadmaps

= Map: a data structure, topological, geometric, and grids

= Represent the connectivity of a free space by a network of 1-D curves

= Many types: visibility maps, deformation retracts, retract-like structures, piecewise retracts and silhouettes
= Visibility Maps:

Summer School — Robotics | Haoming Zhang | IMA/ZLW & IfU
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Motion Planning: Classical Approaches

Roadmaps

= Deformation reacts: Generalized Voronoi Diagram (GVD)

The set of points where the distance to the two closest obstacles is the same.
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Motion Planning: Sampling-Based Planning

= |deal: Build a complete motion planner (complete configuration space)
Complete motion planner: always returns a solution when one exists and indicates that no such solution exists otherwise.

Problem:
— Challenges of High Dimensions
— Motion Planning is PSPACE-hard
— Complexity is exponential in the dimension of the robot’s configuration space
Practical Algorithms:
— Theoretical: Algorithms strive for completeness and minimal worst-case complexity
Difficult to implement and not robust
— Heuristic: algorithms strive for efficiency in commonly encountered situations
Trade off completeness for practical efficiency
- Weaker performance guarantee
Ways to simplify problem:
— Project search to lower-dimensional space
— Limit the number of possibilities
- Add constraints
Reduce “volume” of free space
— Sacrifice optimality and completeness

Summer School — Robotics | Haoming Zhang | IMA/ZLW & IfU
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Motion Planning: Sampling-Based Planning

The Rise of Monte Carlo Techniques

= Key ldea

— Rather than exhaustively explore ALL possibilities, randomly explore a smaller subset of possibilities while keeping track of
progress

— Facilities “probing” deeper in a search tree much earlier than any exhaustive algorithm can

= What’s the catch?
— Typically we must sacrifice both completeness and optimality
— Classic trade-off between solution quality and runtime performance

» Sampling-based Motion Planning

Summer School — Robotics | Haoming Zhang | IMA/ZLW & IfU M ‘ ‘
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Motion Planning: Sampling-Based Planning

Concept

= Efficiently handling of planning problems

= Good for systems with many Degrees of Freedom (DoF)
= |dea:

— Generate random sample points in configuration space
— Connect start and goal state by connecting samples via collision free paths

» it is not necessary to reason about the whole configuration space (only about a finite number of sample
configurations)
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M

otion Planning: Sampling-Based Planning

Good news, but bad news too

33

Sample-based: The Good News
— Probabilistically complete

— Do not construct the C-space
— Apply easily to high dimensional C-space
— Support fast queries with enough pre-processing

» Many success stories where Sampling-based Motion Planning solve
previously unsolved problems

Sample-based: The Bad News
1. don’t work as well for some problems

— unlikely to sample nodes in narrow passages

— Hard to sample/connect nodes on constraint surfaces
2. No optimality or completeness

Summer School — Robotics | Haoming Zhang | IMA/ZLW & IfU
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Motion Planning: Sampling-Based Planning

Methods
= Probabilistic Roadmaps (PRM)
— Uses sampled states to create a roadmap of the free state space
— Each sample point is connected to an amount of nearby samples via collision free paths
— Collision free paths between samples are determined by a local planner (i.e. linear interpolation)

— Learning Phase
Construction Step:

Construct a probabilistic roadmap by generating random free configurations
of the robot and Connecting them using a local planner

Expansion Step: Supplement the Roadmap
— Query Phase: find a path

Summer School — Robotics | Haoming Zhang | IMA/ZLW & IfU M ‘ ‘
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Motion Planning: Sampling-Based Planning

Methods
= Probabilistic Roadmaps (PRM)

Create random configurations

Slides from Nancy Amato, Sujay Bhattacharjee, G.D. Hager, S. LaValle, and a lot from James Kuffner
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Motion Planning: Sampling-Based Planning

Methods
= Probabilistic Roadmaps (PRM)

Update Neighboring Nodes’ Edges

Slides from Nancy Amato, Sujay Bhattacharjee, G.D. Hager, S. LaValle, and a lot from James Kuffner
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Motion Planning: Sampling-Based Planning

Methods
= Probabilistic Roadmaps (PRM)

End of Construction Step

Slides from Nancy Amato, Sujay Bhattacharjee, G.D. Hager, S. LaValle, and a lot from James Kuffner
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Motion Planning: Sampling-Based Planning

Methods
= Probabilistic Roadmaps (PRM)

Expansion Step

Slides from Nancy Amato, Sujay Bhattacharjee, G.D. Hager, S. LaValle, and a lot from James Kuffner
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Motion Planning: Sampling-Based Planning

Methods
= Probabilistic Roadmaps (PRM)

End of Expansion Step

Slides from Nancy Amato, Sujay Bhattacharjee, G.D. Hager, S. LaValle, and a lot from James Kuffner
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Motion Planning: Sampling-Based Planning

Methods
= Probabilistic Roadmaps (PRM)

Select start and goal

Start

Slides from Nancy Amato, Sujay Bhattacharjee, G.D. Hager, S. LaValle, and a lot from James Kuffner
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Motion Planning: Sampling-Based Planning

Methods
= Probabilistic Roadmaps (PRM)

Connect Start and Goal to Roadmap

Start

Slides from Nancy Amato, Sujay Bhattacharjee, G.D. Hager, S. LaValle, and a lot from James Kuffner
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Motion Planning: Sampling-Based Planning

Methods
= Probabilistic Roadmaps (PRM)

Find the Path from Start to Goal

Slides from Nancy Amato, Sujay Bhattacharjee, G.D. Hager, S. LaValle, and a lot from James Kuffner
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M

otion Planning: Sampling-Based Planning

Methods

Tree-based Planners
— Uses sampled states to create a tree of the free state space
— Root of the tree is the start state (i.e. A)

— Based on this, the tree is expanded towards the goal state by creating collision free connections between samples

e

start

43
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Motion Planning: Sampling-Based Planning

Compare
= Complete Motion Planning = Probabilistic Roadmap = Tree-based Planners
— Always terminate — Construction and query phase — Good for single query planning
— Can be reused for subsequent queries — Does not cover the whole free state
— Not efficient — Efficient space
_ Not robust even for low DoF — Work for complex problems with many — Many up to date methods are tree-
DoFs based planners

— Difficult for narrow passages
— May not terminate when no path exists

v

<4 =

® o 3
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Motion Planning: Tree-based Planners

Rapidly Exploring Random'Trees (RRT)
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Motion Planning: Tree-based Planners

Rapidly Exploring Random Trees (RRT)

Algorithm: Build RRT

Input: Initial configuration g;,,;;, number of vertices in RRT K, incremental distance Aq
Output: RRT tree T

Initialize tree T with initial configuration g;,;;
fork=1to K:
Qrana < random point in configuration space
Qneqr < Nearest vertexintree T of q,q4ng
Qnew < New config by moving an incremental dist Aq from g,,.,, in the direction of g,4,,4
Add vertex g, to tree T
Add edge (gneqr> Gnew) to tree T

EXTEND(T, g,4na)

[ Kuffner & LaValle , ICRA’00]
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Motion Planning: Tree-based Planners

= Grow two RRTs towards each other

a

qmrget [ Kuffner, LaValle ICRA “00]

ngal
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Motion Planning: Tree-based Planners

= Grow two RRTs towards each other

A single RRT-Connect iteration..

[ Kuffner & LaValle , ICRA’00]
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Motion Planning: Tree-based Planners

= Grow two RRTs towards each other

1) One tree grown using random target

[ Kuffner & LaValle , ICRA’00]
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Motion Planning: Tree-based Planners

= Grow two RRTs towards each other

2) New node becomes target for other tree

CItarget

[ Kuffner & LaValle , ICRA’00]
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Motion Planning: Tree-based Planners

= Grow two RRTs towards each other

3) Calculate node “nearest” to target

Qtarget

qnear

[ Kuffner & LaValle , ICRA’00]
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Motion Planning: Tree-based Planners

= Grow two RRTs towards each other

4) Try to add new collision-free branch

qnew

'/ qtarget

[ Kuffner & LaValle , ICRA’00]
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Motion Planning: Tree-based Planners

= Grow two RRTs towards each other

5) If successful, keep extending branch

qnew

/ qtarget

[ Kuffner & LaValle , ICRA’00]
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Motion Planning: Tree-based Planners

= Grow two RRTs towards each other

5) If successful, keep extending branch

qnew

»/ qtarget

qnear

[ Kuffner & LaValle , ICRA’00]
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Motion Planning: Tree-based Planners

= Grow two RRTs towards each other

5) If successful, keep extending branch

qnew

\ qtarget

qnear
Uinit

[ Kuffner & LaValle , ICRA’00]
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Motion Planning: Tree-based Planners

= Grow two RRTs towards each other

6) Path found if branch reaches target

[ Kuffner & LaValle , ICRA’00]
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Motion Planning: Tree-based Planners

= Grow two RRTs towards each other

7) Return path connecting start and goal

[ Kuffner & LaValle , ICRA’00]
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Motion Planning: Tree-based Planners

= Applications of RRTs

— Robotics Applications
- mobile robotics
- manipulation
- Humanoids

— Other Applications
- biology (drug design)
- manufacturing and virtual prototyping (assembly analysis)
- verification and validation
- computer animation and real-time graphics aerospace

= RRT Extensions
— discrete planning (STRIPS and Rubik's cube)
— real-time RRTs
— anytime RRTs
— dynamic domain RRTs
— deterministic RRTs
— parallel RRTs
— hybrid RRTs
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Motion Planning: Tree-based Planners

Review of Piano Mover‘s Problem

Balancing Exploration and Exploitation in Sampling-Based Motion Planning
"The piano mover's problem”
Markus Rickert, Arne Sieverling, and Oliver Brock

fortiss GmbH, An-Institut Technische Universitat Munchen, Minchen, Germany
Robotics and Biology Laboratory, Technische Universitat Berlin, Berlin, Germany

IEEE Transactions on Robotics
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M

otion Planning: Tree-based Planners

Di

d we concern the Real World? Not Really!
Robots in Real World

— Have inertia (not a point)

— Have limited controllability (nonholonomic motion)
— Have limited sensors

— Face a dynamic environment

— Face an unreliable environment
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Motion Planning: Tree-based Planners

Kinodynamic Motion Planning
= Kinodynamic Motion Planning: Takes dynamic constraints into account (i.e. velocity, acceleration, friction,
bounded forces)
— Important for realistic robots
— Enables motion planning for complex dynamics (e.g complex environment)
= Challenges
— Dimensionality of the state space is typically higher because dynamics (velocity, acceleration, ...) are included in the state
space
— State space may not be entirely reachable from the robot’s initial state
— Difficult to define a meaningful metric for these complexe state spaces

(eclim . m;$ - %
E ~ ‘l 01> gl = 1
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Motion Planning: Tree-based Planners

Kinodynamic Motion Planning by Interior-Exterior Cell Exploration (KPIECE)
= KPIECE:

— Addresses previously mentioned challenges

— Uses a physic simulation to create motion samples
= Design goals

— Ease of use for systems where only forward propagation is available (simulation can be done forward in time)

— No state sampling and distance metric is required

— For complex systems, described by physical models (instead of equations of motions)
= Advantages

— Fast and accurate

— Is applicable in real-time motion planning
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Motion Planning: Tree-based Planners

Kinodynamic Motion Planning by Interior-Exterior Cell Exploration (KPIECE)

Definition: KPIECE Motion Planning P

A KPIECE motion planning problem is defined as a tuple (Q, U, I, F, f)
* ( is the state space

« U is the control space

[ € Q is the set of initial states

« F € Q is the set of final states

» fis the dynamics (forward propagation routine)

Uq, ..., U, and time tq, ... t,

A solution to this motion planning problem consists of a sequence of controls
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Motion Planning: Tree-based Planners

KPIECE: High-Level Description of the algorithm

= |terative Construction of a tree of motions in state space of the robot.

= Motion u = (s,u,t), s€ Qu e U,t € R*®

Select an existing motion from the
motion tree

Simulate new motion starting at a
state along the selected motion

If collision free, add this motion to
the tree

Information gathered in the
motion simulation is incorporated
for future motion selection
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states of the start of motions are depicted
as larger vertices. The motion is computed
by forward integration at fixed step size.
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Motion Planning: Tree-based Planners

KPIECE: Estimating State Space Coverage Projection of state
Which samples to create? space (grid)

v

= Key difficulty
— Avoiding over-exploration of certain regions
— Avoiding under-exploration of other regions

= |dea: Employ a projection of the state space

Assumption: if the tree of motions covers the projection well, it also
covers the state space E

= How to define the projection?

Tree of motions

RWTHAACHEN
UNIVERSITY

Summer School — Robotics | Haoming Zhang | IMA/ZLW & IfU
14.08.2017 | www.ima-zlw-ifu.rwth-aachen.de

66



Motion Planning: Tree-based Planners

KPIECE: State Space Coverage
= KPIECE carefully selects motions for further expansion

Selection strategy is based on estimating the coverage of the state
space that the tree of motions achieves

= Experiments shown that projection is often easy to specify
manually

= An algorithm for calculating the projection is also available

[Sucan, loan Alexandru. Task and motion planning for mobile manipulators. Diss. Rice University
Houston, 2011]
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Motion Planning: Tree-based Planners

Find the shortest path between two points
We assume to have a motion tree

= How to find a path starting at the current state to a
goal state?

= This is done by standard search algorithms (similar
to navigation system in cars)

— Breadth- and depth-search
— Variant of A*-Algorithm

Summer School — Robotics | Haoming Zhang | IMA/ZLW & IfU
14.08.2017 | www.ima-zlw-ifu.rwth-aachen.de

68

Projection of state
space (grid)

v

Tree of motions

o v Bl A7

CHEN
UNIVERSITY



Outline

1 Motion Planning 10:00 — 12:00
1.1 Introduction to Motion Planning 10:00 — 10:15
1.2 Configuration Space 10:15 -10:25
1.3 Classical Approaches 10:25 - 10:55
1.4 Sampling-Based Planning 10:55 — 11:25
1.5 Tree-Based Planning 11:25 - 11:55
1.6 Motion Planning in Practice 11:55 -12:00

2 Lunch Time 12:00 — 14:00
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Motion Planning in Practical

Pick and Place Tasks
= Common task in industry
= Take an object at position A and bring it to position B

Summer School — Robotics | Haoming Zhang | IMA/ZLW & IfU
14.08.2017 | www.ima-zlw-ifu.rwth-aachen.de

70




Motion Planning in Practical

Pick and Place Tasks: Robot vs. Human

4 Place operation

| | o, asAERARe Ry,
manipulation phase ™., ' depart phase™-.,
. * *

" |

: I

: |

I | |

: ¥ | Stages

i o i | Rireach phase N

N 7 I , A: approach phase Transitions

' M | L: lift phase o: preshape phase
: T ‘ h | M: movement phase Q: grasp phase

\ ) ] D:depart phase u: ungrasp phase

1. Pregrasp phase

— Phase starts at an arbitrary robot configuration

— Gripper is moved towards the grasp location
2. Grasp phase

— The gripper gets in contact with the object and closes
3. Manipulation phase

— The grasped object is enclosed by the gripper

— The object is translated towards the place location by enforcing path constraints
4. Ungrasp phase

— The gripper releases the object
5. Depart phase

— The manipulator retreats from the object
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Motion Planning in Practical

The Open Motion Planning Library (OMPL)
Open Source Implementation of many sampling-based algorithms and core low-level data structures

= C++ with Python Bindings
= For Academic and industrial Settings

f '—ﬁu\'
| GoAla W

= Conceptual Overview of OMPL:
— Efficiency
— Simple integration with other software packages
— Straightforward integration of external contributions
— Clarity of Concepts
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Motion Planning in Practical

The Open Motion Planning Library (OMPL)

only when planning with differential constraints

ControlSampler ; ControlSpace StateSpace i StateSampler 1
Implements sampling of : Represents the state space in : Implements uniform and '
controls for a specific Represents the control space which planning is performed; ' Gaussian sampling of states |
ControlSpace the Pl L reprgsent implements topology-specific § for a specific StateSpace |
inputs to the system being functions: distance, interpola- R — o

planned for tion, state (de)allocation.

StatePropagator

Returns the state obtained . ProjectionEvaluator
by applying a control to  Computes projections from |
some arbitrary inital state i states of a specific State- !
. Space to a low-dimensional

Euclidean space.

MotionValidator
Provides the ability to check
the validity of path segments
using the interpolation
provided by the StateSpace.

StateValidityChecker
Decides whether a given state
from a specific StateSpace
is valid.

F Path
. Representation of a path;

¢ used to represent a solution |
: to a planning problem. ]

- -

! ValidStateSampler
. Provides the ability to sample
valid states. : e —a- .
R - SimpleSetup

Provides a simple way

of setting up all needed

classes without limiting

functionality.

@ User must instantiate this class.
{ = User must instantiate this class unless SimpleSetup is used.
User code i7777; User can instantiate this class, but defaults are provided.
A—>B Ais owned by B.

RWTHAACHEN
UNIVERSITY

73 Summer School — Robotics | Haoming Zhang | IMA/ZLW & IfU @ M | ZLW
14.08.2017 | www.ima-zlw-ifu.rwth-aachen.de



What is coming?

% i ROS
L l nux “ Open Source Robotics Foundation

>Movdlt!

moving robots into the future
moveit.ros.org

Willow

» § Y
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Outline

75

1 Motion Planning

10:00 — 12:00

2 Lunch Time

12:00 — 14:00

Enjoy your Lunch

and

See you
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