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Robot “Handle” from Boston Dynamics
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Optimal Control

Closed-Loop vs Open-Loop

Closed-Loop

• 𝑢 = 𝑢 (𝑥)

• Global methods and solutions

• Good for low-dimensional problems

• In discrete cases: Markov-Decision Process

Open-Loop

• 𝑢 = 𝑢 (𝑡)

• Local methods and solutions

• Good for high-dimensional problems

Trajectory Optimization
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Optimal Control

Problem Formulation: Forward Shooting Method

• Forward shooting method: optimize only over actions

𝑢1

𝑢1′

min
𝐮1,…,𝐮𝑇

෍

𝑡=1

𝑇

𝑐 𝐱𝑡, 𝐮𝑡 𝐱𝑡 = 𝑓(𝐱𝑡−1,𝐮𝑡−1)s.t.

• Sensitive for initial conditions

 𝐮1, … , 𝐮𝑇 sequence of actions

 𝑐(𝐱𝑡 , 𝐮𝑡) costs for state 𝑥𝑡 and actions 𝑢𝑡
 𝑓 𝐱𝑡−1, 𝐮𝑡−1 deterministic (forward-)dynamicmodell

target

start 𝐱0
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Optimal Control

Problem Formulation: Forward Shooting Method

• Forward shooting method: optimize only over actions

• Each state depends on all previous actions

min
𝐮1,…,𝐮𝑇

෍

𝑡=1

𝑇

𝑐 𝐱𝑡, 𝐮𝑡 𝐱𝑡 = 𝑓(𝐱𝑡−1,𝐮𝑡−1)s.t.

• Sensitive for initial conditions

min
𝐮1,…,𝐮𝑇

𝑐 𝐱1, 𝐮1 + 𝑐 𝑓 𝐱1, 𝐮1 , 𝐮2 +⋯+ 𝑐(𝑓 𝑓 … … , 𝐮𝑇)
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Optimal Control

Problem Formulation: Collocation

• Collocation method: optimize over states and actions with constraints

min
𝐮1,…,𝐮𝑇, 𝐱1,…,𝐱𝑇

෍

𝑡=1

𝑇

𝑐 𝐱𝑡, 𝐮𝑡 s.t.

 𝐱1, … , 𝐱𝑇 sequence of states

 𝑐(𝐱𝑡 , 𝐮𝑡) costs for state 𝑥𝑡 and actions 𝑢𝑡
 𝑓 𝐱𝑡−1, 𝐮𝑡−1 deterministic dynamic modell

𝐱𝑡 = 𝑓(𝐱𝑡−1,𝐮𝑡−1)
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Optimal Control

Problem Formulation: Collocation

• Direct collocation method: optimize over states with constraints

min
𝐱1,…,𝐱𝑇

෍

𝑡=1

𝑇

𝑐 𝐱𝑡, 𝐮𝑡 s.t.

• Direct collocation: Alternative Alternative consideration of the general collocation
 Optimizes only over states

 Actions result implicity

 Uses inverses dynamikmodel 𝑓−1(𝐱𝑡−1,𝐱𝑡)

𝐮𝑡−1 = 𝑓−1(𝐱𝑡−1,𝐱𝑡)
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Optimal Control

Problem Formulation: Collocation

• Direct collocation method: optimize over states with constraints

• Each action depends only on neighboured states

 No instability due to forward integration

min
𝐱1,…,𝐱𝑇

෍

𝑡=1

𝑇

𝑐 𝐱𝑡, 𝐮𝑡 s.t. 𝐮𝑡−1 = 𝑓−1(𝐱𝑡−1,𝐱𝑡)
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Optimal Control

Forward Shooting vs Direct Collocation

• Forward Shooting

 Optimizes over actions

 State trajectory results implicit

 Dynamics are an implicit constraint (always fulfilled)

• Direct Collocation

 Optimizes over states

 Action trajectory results implicit

 Dynamics are an explicit constraint (can be “soft”)

min
𝐮1,…,𝐮𝑇

෍

𝑡=1

𝑇

𝑐 𝐱𝑡, 𝐮𝑡 𝐱𝑡 = 𝑓(𝐱𝑡−1,𝐮𝑡−1)

min
𝒙1,…,𝒙𝑇

෍

𝑡=1

𝑇

𝑐 𝐱𝑡, 𝐮𝑡 𝐮𝑡−1 = 𝑓−1(𝐱𝑡−1,𝐱𝑡)
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Trajectory Optimization

Problem Formulation: Forward Shooting Method

• 𝐮1, … , 𝐮𝑇 sequence of actions

• 𝑐(𝐱𝑡 , 𝐮𝑡) costs for state 𝑥𝑡 and actions 𝑢𝑡
• 𝑓 𝐱𝑡−1, 𝐮𝑡−1 deterministic (forward-) dynamic m

min
𝐮1,…,𝐮𝑇

෍

𝑡=1

𝑇

𝑐 𝐱𝑡, 𝐮𝑡 𝐱𝑡 = 𝑓(𝐱𝑡−1,𝐮𝑡−1)

min
𝐮1,…,𝐮𝑇

𝑐 𝐱1, 𝐮1 + 𝑐 𝑓 𝐱1, 𝐮1 , 𝐮2 +⋯+ 𝑐(𝑓 𝑓 … … , 𝐮𝑇)

s.t.
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Shooting Methode: LQR

Linear Quadratic Regulator

• Special case: Systems with

 Linear dynamics

 Quadratic costs

• LQR provides an exact solution

min
𝐮1,…,𝐮𝑇

𝑐 𝐱1, 𝐮1 + 𝑐 𝑓 𝐱1, 𝐮1 , 𝐮2 +⋯+ 𝑐(𝑓 𝑓 … … , 𝐮𝑇)

𝑓 𝐱𝑡, 𝐮𝑡 = 𝐅𝑡
𝐱𝑡
𝐮𝑡

+ 𝐟𝑡 𝑐 𝐱𝑡, 𝐮𝑡 =
1

2

𝐱𝑡
𝐮𝑡

𝑇

𝐂𝑡
𝐱𝑡
𝐮𝑡

+
𝐱𝑡
𝐮𝑡

𝑇

𝐜𝑡

linear quadratic
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Example: Linear Dynamics

Ball in Zero-Gravity

• Linear dynamics:

• (Newton) dynamic of the zero-gravity ball:

state:

𝐱𝑡, 𝐲𝑡, ሶ𝐱𝑡, ሶ𝐲𝑡

action:

𝐮𝑥, 𝐮𝑦

𝑓 𝐱𝑡, 𝐮𝑡 = 𝐅𝑡
𝐱𝑡
𝐮𝑡

+ 𝐟𝑡

𝐱𝑡+1
𝐲𝑡+1
ሶ𝐱𝑡+1
ሶ𝐲𝑡+1

=

𝐱𝑡 + ∆𝑡 ሶ𝐱𝑡 + 0.5 ∆𝑡 𝐮𝑥
𝐲𝑡 + ∆𝑡 ሶ𝐲𝑡 + 0.5 ∆𝑡 𝐮𝑦

ሶ𝐱𝑡 + ∆𝑡 𝐮𝑥
ሶ𝐲𝑡 + ∆𝑡 𝐮𝑦

𝐅𝑡 =

1 0 ∆𝑡 0 0.5 ∆𝑡 0
0 1 0 ∆𝑡 0 0.5 ∆𝑡
0 0 1 0 ∆𝑡 0
0 0 0 1 0 ∆𝑡
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Example: Manipulation

State Space

• In robotics, the state space contains (very) often:

 Joint position and velocity

 Object position and velocity

• Detection of joint states

 Joint encoder are reliable

 Easy

• Perception of object states

 Often a camera is used

 Complicated
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Example: Manipulation

Costs

• Costfunction:

 Costs contain often a distance term 𝐱𝑡 − 𝐱∗ and an energy term 𝛽 𝐮𝑡

• Higher weighting of costs in the final time step 𝑡 = 𝑇:

• For manipulation tasks, 𝐱∗ usually contains:

 Target pose of end effector

 Target pose of object

𝐱∗ : Targetstate

𝑐 𝐱𝑇 , 𝐮𝑇 = 2 𝐱𝑇 − 𝐱∗ + 𝛽 𝐮𝑇

𝑐 𝐱𝑡, 𝐮𝑡 = 𝐱𝑡 − 𝐱∗ + 𝛽 𝐮𝑡
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Linear Quadratic Regulator

Definition

Terminology:

• 𝑄 𝐱𝑡 , 𝐮𝑡 : expected cost-to-go from state 𝐱𝑡 and with action 𝐮𝑡

• 𝑉 𝐱𝑡 : expected cost-to-go from state 𝐱𝑡

• 𝑉 𝐱𝑡 = min
𝐮𝑡

𝑄(𝐱𝑡 , 𝐮𝑡)

min
𝐮1,…,𝐮𝑇

𝑐 𝐱1, 𝐮1 + 𝑐 𝑓 𝐱1, 𝐮1 , 𝐮2 +⋯+ 𝑐(𝑓 𝑓 … … , 𝐮𝑇)

𝑓 𝐱𝑡, 𝐮𝑡 = 𝐅𝑡
𝐱𝑡
𝐮𝑡

+ 𝐟𝑡

𝑐 𝐱𝑡, 𝐮𝑡 =
1

2

𝐱𝑡
𝐮𝑡

𝑇

𝐂𝑡
𝐱𝑡
𝐮𝑡

+
𝐱𝑡
𝐮𝑡

𝑇

𝐜𝑡
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Linear Quadratic Regulator

Backward Propagation

• Backward Propagation

 Start at 𝐮𝑇 (base case)

 Backward calculation of the actions 𝐮𝑇−1…𝐮0

Only term that depends

on 𝐮𝑇 only

min
𝐮1,…,𝐮𝑇

𝑐 𝐱1, 𝐮1 + 𝑐 𝑓 𝐱1, 𝐮1 , 𝐮2 +⋯+ 𝑐(𝑓 𝑓 … … , 𝐮𝑇)

𝑓 𝐱𝑡, 𝐮𝑡 = 𝐅𝑡
𝐱𝑡
𝐮𝑡

+ 𝐟𝑡

𝑐 𝐱𝑡, 𝐮𝑡 =
1

2

𝐱𝑡
𝐮𝑡

𝑇

𝐂𝑡
𝐱𝑡
𝐮𝑡

+
𝐱𝑡
𝐮𝑡

𝑇

𝐜𝑡

𝐱𝑇 (unknown)
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Linear Quadratic Regulator

Backward Propagation: Calculate 𝐮𝑇 (base case)

• Costs in timestep 𝑡 = 𝑇

𝐂𝑇 =
𝐂𝐱𝑇,𝐱𝑇 𝐂𝐱𝑇,𝐮𝑇
𝐂𝑢𝑇,𝑥𝑇 𝐂𝐮𝑇,𝐮𝑇

𝐜𝑇 =
𝐜𝐱𝑇
𝐜𝐮𝑇

Cost matrices in 

last timestep

𝑄 𝐱𝑇 , 𝐮𝑇 = const +
1

2

𝐱𝑇
𝐮𝑇

𝑇

𝐂𝑇
𝐱𝑇
𝐮𝑇

+
𝐱𝑇
𝐮𝑇

𝑇

𝐜𝑇

𝛻𝑢𝑇𝑄 𝐱𝑇 , 𝐮𝑇 = 𝐂𝐮𝑇,𝐱𝑇𝐱𝑇 + 𝐂𝐮𝑇,𝐮𝑇𝐮𝑇 + 𝐜𝐮𝑇
𝑇 = 0

𝐮𝑇 = −𝐂𝐮𝑇,𝐮𝑇
−1 (𝐂𝐮𝑇,𝐱𝑇𝐱𝑇 + 𝐜𝐮𝑇)

𝐮𝑇 = 𝐊𝑇𝐱𝑇 + 𝐤𝑇

𝐊𝑇 = −𝐂𝐮𝑇,𝐮𝑇
−1 𝐂𝐮𝑇,𝐱𝑇

𝐤𝑇 = −𝐂𝐮𝑇,𝐮𝑇
−1 𝐜𝐮𝑇

[Linear-Feedback Policy]

• Action with minimal costs:
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Linear Quadratic Regulator

Backward Propagation: Calculate 𝑉(𝐱𝑇) (base case) 

• Goal: Eliminate 𝐮𝑇 in 𝑄(𝐱𝑡 , 𝐮𝑡)
• Remember: 𝑉 𝐱𝑡 = min

𝐮𝑡
𝑄(𝐱𝑡 , 𝐮𝑡)

• Get 𝑉 𝐱𝑡 through substitution of optimal action 𝐮𝑇 in 𝑄(𝐱𝑡 , 𝐮𝑡)

• Use of costs in 𝑉 𝐱𝑡

𝑉 𝐱𝑇 = const +
1

2

𝐱𝑇
𝐊𝑇𝐱𝑇 + 𝐤𝑇

𝑇

𝐂𝑇
𝐱𝑇

𝐊𝑇𝐱𝑇 + 𝐤𝑇
+

𝐱𝑇
𝐊𝑇𝐱𝑇 + 𝐤𝑇

𝑇

𝐜𝑇

𝑉 𝐱𝑇 =
1

2
𝐱𝑇
𝑇𝐂𝐱𝑇,𝐱𝑇 +

1

2
𝐱𝑇
𝑇𝐂𝐱𝑇,𝐮𝑇𝐊𝑇𝐱𝑇 +

1

2
𝐱𝑇
𝑇𝐊𝑇

𝑇𝐂𝐮𝑇,𝐱𝑇𝐱𝑇 +
1

2
𝐱𝑇
𝑇𝐊𝑇

𝑇𝐂𝐮𝑇,𝐮𝑇𝐊𝑇𝐱𝑇

+𝐱𝑇
𝑇𝐊𝑇

𝑇𝐂𝐮𝑇,𝐮𝑇𝐤𝑇 +
1

2
𝐱𝑇
𝑇𝐂𝐱𝑇,𝐮𝑇𝐤𝑇 + 𝐱𝑇

𝑇𝐜𝐱𝑇 + 𝐗𝑇
𝑇𝐊𝑇

𝑇𝐜𝐮𝑇 + const

𝐕𝑇 = 𝐂𝐱𝑇,𝐱𝑇 + 𝐂𝐱𝑇,𝐮𝑇𝐊𝑇 + 𝐊𝑇
𝑇𝐂𝐮𝑇,𝐱𝑇𝐱𝑇 + 𝐊𝑇

𝑇𝐂𝐮𝑇,𝐮𝑇𝐊𝑇

𝐯𝑇 = 𝐊𝑇
𝑇𝐂𝐮𝑇,𝐮𝑇𝐤𝑇 + 𝐂𝐱𝑇,𝐮𝑇𝐤𝑇 + 𝐜𝐱𝑇 + 𝐊𝑇

𝑇𝐜𝐮𝑇

𝑉 𝐱𝑇 = const +
1

2
𝐱𝑇
𝑇𝐕𝑇𝐱𝑇 + 𝐱𝑇

𝑇𝐯𝑇 [cost-to-go as a function of the final state]
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• Now: Solve 𝐮𝑇−1 in dependence of 𝐱𝑇−1
• 𝐮𝑇−1 affect 𝐱𝑇

• Eliminate 𝐱𝑇 (cf. cost-to-go) through dynamic model

Linear Quadratic Regulator

Backward Propagation: Timestep T-1

𝑄 𝐱𝑇−1, 𝐮𝑇−1 = const +
1

2

𝐱𝑇−1
𝐮𝑇−1

𝑇

𝐂𝑇−1
𝐱𝑇−1
𝐮𝑇−1

+
𝐱𝑇−1
𝐮𝑇−1

𝑇

𝐜𝑇−1 + 𝑉(𝑓 𝐱𝑇−1, 𝐮𝑇−1 )

𝑉 𝐱𝑇 = const +
1

2
𝐱𝑇
𝑇𝐕𝑇𝐱𝑇 + 𝐱𝑇

𝑇𝐯𝑇

Optimal cost-to-go 

through dynamic modelCosts in considered timestep

𝑓 𝐱𝑇−1, 𝐮𝑇−1 = 𝐱𝑇 = 𝐅𝑇−1
𝐱𝑇−1
𝐮𝑇−1

+ 𝐟𝑇−1

𝑉 𝐱𝑇 = const +
1

2

𝐱𝑇−1
𝐮𝑇−1

𝑇

𝐅𝑇−1
𝑇 𝐕𝑇𝐅𝑇−1

𝐱𝑇−1
𝐮𝑇−1

+
𝐱𝑇−1
𝐮𝑇−1

𝑇

𝐅𝑇−1
𝑇 𝐕𝑇𝐟𝑇−1 +

𝐱𝑇−1
𝐮𝑇−1

𝑇

𝑭𝑇−1
𝑇 𝐯𝑇…
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Linear Quadratic Regulator

Backward Propagation: Timestep T-1

• Substitution of quadratic and linear terms:

𝑉 𝐱𝑇 = const +
1

2

𝐱𝑇−1
𝐮𝑇−1

𝑇

𝐅𝑇−1
𝑇 𝐕𝑇𝐅𝑇−1

𝐱𝑇−1
𝐮𝑇−1

+
𝐱𝑇−1
𝐮𝑇−1

𝑇

𝐅𝑇−1
𝑇 𝐕𝑇𝐟𝑇−1 +

𝐱𝑇−1
𝐮𝑇−1

𝑇

𝐅𝑇−1
𝑇 𝐯𝑇…

linearquadratic linear

𝑄 𝐱𝑇−1, 𝐮𝑇−1 = const +
1

2

𝐱𝑇−1
𝐮𝑇−1

𝑇

𝐂𝑇−1
𝐱𝑇−1
𝐮𝑇−1

+
𝐱𝑇−1
𝐮𝑇−1

𝑇

𝐜𝑇−1 + 𝑉(𝐱𝑇)

𝑄 𝐱𝑇−1, 𝐮𝑇−1 = const +
1

2

𝐱𝑇−1
𝐮𝑇−1

𝑇

𝐐𝑇−1

𝐱𝑇−1
𝐮𝑇−1

+
𝐱𝑇−1
𝐮𝑇−1

𝑇

𝐪𝑇−1

𝐐𝑇−1 = 𝐂𝑇−1 + 𝐅𝑇−1
𝑇 𝐕𝑇𝐅𝑇−1

𝐪𝑇−1 = 𝐜𝑇−1 + 𝐅𝑇−1
𝑇 𝐕𝑇𝐟𝑇−1 + 𝐅𝑇−1

𝑇 𝐯𝑇
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Linear Quadratic Regulator

Backward Propagation: Calculate 𝐮𝑇−1…𝐮0

• Action with minimal costs

• Are there any questions?

𝛻𝐮𝑇−1𝑄 𝐱𝑇−1, 𝐮𝑇−1 = 𝑄𝐮𝑇−1,𝐱𝑇−1𝐱𝑇−1 + 𝑄𝐮𝑇−1,𝐮𝑇−1𝐮𝑇−1 + 𝐪𝐮𝑇−1
𝑇 = 0

𝐮𝑇−1 = 𝐊𝑇−1𝐱𝑇−1 + 𝐤𝑇−1

𝐊𝑇−1 = −𝐐𝐮𝑇−1,𝐮𝑇−1
−1 𝐐𝐮𝑇−1,𝐱𝑇−1

𝐤𝑇−1 = −𝐐𝐮𝑇−1,𝐮𝑇−1
−1 𝐪𝐮𝑇−1

[Linear-Feedback Policy]
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Linear Quadratic Regulator

Pseudocode Algorithm

Backward recursion

(Get linear equations for 𝐮)

for 𝑡 = 𝑇 to 1:

𝐐𝑡 = 𝐂𝑡 + 𝐅𝑡
𝑇𝐕𝑡+1𝐅𝑡

𝐪𝑡 = 𝐜𝑡 + 𝐅𝑡
𝑇𝐕𝑡+1𝐟𝑡 + 𝐅𝑡

𝑇𝐯𝑡+1

𝑄 𝐱𝑡 , 𝐮𝑡 = const +
1

2

𝐱𝑡
𝐮𝑡

𝑇

𝐐𝑡

𝐱𝑡
𝐮𝑡

+
𝐱𝑡
𝐮𝑡

𝑇

𝐪𝑡

𝐮𝑡 ← argmin
𝐮𝑡

𝑄 𝐱𝑡 , 𝐮𝑡 =𝐊𝑡𝐱𝒕 + 𝐤𝑡

𝐊𝑡 = −𝐐𝐮𝑡,𝐮𝑡
−1 𝐐𝐮𝑡,𝐱𝑡

𝐤𝑡 = −𝐐𝐮𝑡,𝐮𝑡
−1 𝐪𝐮𝒕

𝐕𝑡 = 𝐐𝐱𝑡,𝐱𝑡 + 𝐐𝐱𝑡,𝐮𝑡𝐊𝑡 + 𝐊𝑡
𝑇𝐐𝐮𝑡,𝐱𝑡𝐱𝑡 + 𝐊𝑡

𝑇𝐐𝐮𝑡,𝐮𝑡𝐊𝑡

𝐯𝑡 = 𝐊𝑡
𝑇𝐐𝐮𝑡,𝐮𝑡𝐤𝑡 + 𝐐𝐱𝑡,𝐮𝑡𝐤𝑡 + 𝐪𝐱𝑡 + 𝐊𝑡

𝑇𝐪𝐮𝑡

𝑉 𝐱𝑡 = const +
1

2
𝐱𝑡
𝑇𝐕𝑡𝐱𝑡 + 𝐱𝑡

𝑇𝐯𝑡

Forward recursion

(Use known initial state to get

values for 𝐮)

for 𝑡 = 1 to 𝑇:

𝐮𝑡 = 𝐊𝑡𝐱𝒕 + 𝐤𝑡

𝐱𝑡+1 = 𝑓(𝐱𝑡,𝐮𝑡)
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Linear Quadratic Regulator

Stochastic Dynamic

• With Gaussian dynamics

• Solution: Choose actions according to 

• Nothing changes at the algorithm! Can ignore 𝚺𝑡 due to symmetry of Gaussians

𝐮𝑡 = 𝐊𝑡𝐱𝑡 + 𝐤𝑡

𝑓 𝐱𝑡, 𝐮𝑡 = 𝐅𝑡
𝐱𝑡
𝐮𝑡

+ 𝐟𝑡

𝐱𝑡+1 ~ 𝑝(𝐱𝑡+1|𝐱𝑡, 𝐮𝑡)

𝑝 𝐱𝑡+1 𝐱𝑡, 𝐮𝑡 = 𝒩(𝐅𝑡
𝐱𝑡
𝐮𝑡

+ 𝐟𝑡, 𝚺𝑡)
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Are we now able to control “Handle”?



Summerschool | IMA/ZLW & IfU

15.08.2017  |  www.ima-zlw-ifu.rwth-aachen.de27

Non-linear System: DDP/iterativer LQR

Approach

• So far: linear-quadratic assumptions

• Can we approximate a nonlinear system as a linear-quadratic system?

 Yes, we can! Taylor series expansion of the dynamics and the costs

𝑓 𝐱𝑡, 𝐮𝑡 = 𝐅𝑡
𝐱𝑡
𝐮𝑡

+ 𝐟𝑡

𝑐 𝐱𝑡, 𝐮𝑡 =
1

2

𝐱𝑡
𝐮𝑡

𝑇

𝐂𝑡
𝐱𝑡
𝐮𝑡

+
𝐱𝑡
𝐮𝑡

𝑇

𝐜𝑡

[dynamic]

[costs]
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Now we can run LQR with dynamics ҧ𝑓, cost ҧ𝑐, state 𝛿𝑥𝑡 = 𝑥𝑡 − ො𝑥𝑡 and action 𝛿𝑢𝑡 = 𝑥𝑡 − ො𝑥𝑡

Iterative Linear Quadratic Regulator (i-LQR)

Nonlinear dynamics and costs: iterative approximation

• First order taylor expansion of the dynamics at trajectory ො𝑥𝑡 , ො𝑢𝑡 , 𝑡 = 1…𝑇

• Second order taylor expansion of the costs at trajectory ො𝑥𝑡 , ො𝑢𝑡 , 𝑡 = 1…𝑇

𝑓 𝐱𝑡, 𝐮𝑡 = 𝑓 ො𝐱𝑡, ෝ𝐮𝑡 + 𝛻𝐱𝑡,𝐮𝑡𝑓 ො𝐱𝑡, ෝ𝐮𝑡
𝐱𝑡 − ො𝐱𝑡
𝐮𝑡 − ෝ𝒖𝑡

𝑐 𝐱𝑡, 𝐮𝑡 = 𝑐 ො𝐱𝑡, ෝ𝐮𝑡 + 𝛻𝐱𝑡,𝐮𝑡𝑐 ො𝐱𝑡, ෝ𝐮𝑡
𝐱𝑡 − ො𝐱𝑡
𝐮𝑡 − ෝ𝒖𝑡

+
1

2

𝐱𝑡 − ො𝐱𝑡
𝐮𝑡 − ෝ𝒖𝑡

𝑇

+ 𝛻𝐱𝑡,𝐮𝑡
2 𝑐 ො𝐱𝑡, ෝ𝐮𝑡

𝐱𝑡 − ො𝐱𝑡
𝐮𝑡 − ෝ𝒖𝑡

ҧ𝑓 𝛿𝐱𝑡, 𝛿𝐮𝑡 = 𝐅𝑡
𝛿𝐱𝑡
𝛿𝐮𝑡

𝛻𝐱𝑡,𝐮𝑡𝑓 ො𝐱𝑡, ෝ𝐮𝑡

ҧ𝑐 𝛿𝐱𝑡, 𝛿𝐮𝑡 =
1

2

𝛿𝐱𝑡
𝛿𝐮𝑡

𝑇

𝐂𝑡
𝛿𝐱𝑡
𝛿𝐮𝑡

+
𝛿𝐱𝑡
𝛿𝐮𝑡

𝑇

𝐜𝑡

𝛻𝐱𝑡,𝐮𝑡
2 𝑐 ො𝐱𝑡, ෝ𝐮𝑡 𝛻𝐱𝑡,𝐮𝑡𝑐 ො𝐱𝑡, ෝ𝐮𝑡
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𝛿

Iterative Linear Quadratic Regulator (i-LQR)

Pseudocode

• Initialize: 

 ො𝐱0 is given

 Choose random sequence of actions ෝ𝐮0…ෝ𝐮𝑇
 Calculate (using dynamic model) sequence of states ො𝐱0… ො𝐱𝑇

Linear approximation at ො𝐱, ෝ𝐮

Solve 𝛿𝐮𝑡, 𝑡 = 1…𝑇, so that ෝ𝐮𝑡 + 𝛿𝐮𝑡 minimizes 

the linear approximation

Update step: ො𝑥𝑡
′ = ො𝑥𝑡 + 𝛿𝑥𝑡 and ො𝑢𝑡

′ = ො𝑢𝑡 + 𝛿𝑢𝑡
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Iterative Linear Quadratic Regulator (i-LQR)

Newtonmethod

• Why does this work? i-LQR is similar to Newton method:

 iLQR is the same idea: locally approximate a complex nonlinear function via Taylor expansion 

 What would the iLQR look like if the Newton method was implemented exactly?

min
𝐮1,…,𝐮𝑇

𝑐 𝐱1, 𝐮1 + 𝑐 𝑓 𝐱1, 𝐮1 , 𝐮2 +⋯+ 𝑐(𝑓 𝑓 … … , 𝐮𝑇)

Approximate g(x) with gradient and hessian matrix

Minimize quadratic function
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Differential Dynamic Programming

Newton method for trajectory optimization

• To get Newton’s method, need to use second order dynamics approximation

• Is referred to as differential dynamic programming

• For reading: Jacobson and Maye, “Differential dynamic programming”, 1970

𝑓 𝐱𝑡, 𝐮𝑡 ≈ 𝑓 ො𝐱𝑡, ෝ𝐮𝑡 + 𝛻𝐱𝑡,𝐮𝑡𝑓 ො𝐱𝑡, ෝ𝐮𝑡
𝛿𝐱𝑡
𝛿𝐮𝑡

+
1

2
𝛻𝐱𝑡,𝐮𝑡
2 𝑓 ො𝐱𝑡, ෝ𝐮𝑡

𝛿𝐱𝑡
𝛿𝐮𝑡

𝛿𝐱𝑡
𝛿𝐮𝑡
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Nonlinear dynamics: DDP/i-LQR

Problem

• Analog to the Newton method

• Why is this a bad idea?

• Improved iLQR:

𝛿

Search over 𝛼 until 

improvement achieved (Line-

Search)



Summerschool | IMA/ZLW & IfU

15.08.2017  |  www.ima-zlw-ifu.rwth-aachen.de33

Nonlinear dynamics: DDP/i-LQR

Further Reading

• Mayne, Jacobson (1970). Differential Dynamic Programming

 Original algorithm

• Tassa, Yuval, Tom Erez, and Emanuel Todorov (2012). Synthesis and stabilization of complex behaviors through online 

trajectory optimization.

 Practical implementation notes for the nonlinear iLQR

• Levine, S., & Abbeel, P. (2014). Learning neural network policies with guided policy search under unknown dynamics. 

 Probabilistic formularization of Line Search to get the stepsize 𝛼
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Nonlinear dynamics: DDP/i-LQR

Summary DDP/i-LQR

• Plan a sequence of actions (i.e. for 100 timesteps)

• “Hope that the dynamic model is precise enough”

• If it converges: linearized (timedependent) trajectory 𝐮𝑡 = 𝐊𝑡𝐱𝑡 + 𝐤𝑡

• In practice: Often the system is not on this trajectory (i.e.  𝐱0 is wrong, dynamic model is wrong)

• Are there strategies that deals with this noise?
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Nonlinear dynamics: DDP/i-LQR

Modelpredictive Control

• Yes! If we close the loop!  Modelpredictive Control

• Solution: In timestep t use iLQR/DDP for the upcoming timesteps t to T
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Modelpredictive Control: When does it work?
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Nonlinear dynamics: DDP/i-LQR

When does DDP/i-LQR work?
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Nichtlineare Dynamik: DDP/i-LQR

When does DDP/i-LQR not work?

• Local search does not find a solution in complex contact situations!

• Solution: Initialize trajectory with the help of a human demonstration (instead of random)
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Optimal Control

Forward Shooting vs Direct Collocation

• Forward Shooting

 Optimizes over actions

 State trajectory results implicit

 Dynamics are an implicit constraint (always fulfilled)

• Direct Collocation

 Optimizes over states

 Action trajectory results implicit

 Dynamics are an explicit constraint (can be “soft”)

min
𝐮1,…,𝐮𝑇

෍

𝑡=1

𝑇

𝑐 𝐱𝑡, 𝐮𝑡 𝐱𝑡 = 𝑓(𝐱𝑡−1,𝐮𝑡−1)

min
𝒙1,…,𝒙𝑇

෍

𝑡=1

𝑇

𝑐 𝐱𝑡, 𝐮𝑡 𝐮𝑡−1 = 𝑓−1(𝐱𝑡−1,𝐱𝑡)
Inverse dynamic 

model: How to get it?
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Dynamic model

Inverse dynamic model

• Describes what controls and forces you apply when transitioning from 𝐱𝑡−1 zu 𝐱𝑡

• Can be learned from data

 Training data

▪ Input: 𝐱𝑡−1, 𝐱𝑡
▪ Target Output: 𝐮𝑡−1

• For rigid multi-body dynamics, we can do better when we know system parameters (most 

robots)

𝐮𝑡−1 = 𝑓−1(𝐱𝑡−1,𝐱𝑡)
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Rigid Multi-Body Dynamics

Dynamic model

• Generalized coordinates

• Calculate velocities and accelerations from nearby states

• Dynamics equation: Generalization of f = ma

𝑀 𝐪 und 𝐶 𝐪, ሶ𝐪 Mass and Coriolis Matrices

 𝐵 Actuation Matrix (Diagonal matrix: 1 for 

controllable DoF, 0 if not controllable)

 𝐟 Constraint forces (i.e. 3D contact forces)

 𝐽 𝐪 𝑇 Jacobimatrix that maps f on the generalized 

coordinates

𝐱𝑡 = 𝐪𝑡 ሶ𝐪𝑡 =
𝐪𝑡−1 − 𝐪𝑡

2𝛿𝑡
ሷ𝐪𝑡 =

𝐪𝑡−1 − 2𝐪𝑡 + 𝐪𝑡+1
𝛿𝑡2

𝑀 𝐪 ሷ𝐪 + 𝐶 𝐪, ሶ𝐪 ሶ𝐪 = 𝐵𝐮 + 𝐽 𝐪 𝑇𝐟
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Rigid Multi-Body Dynamics

Further reading

• Springer Handbook of Robotics

 Volume 1 (2008): 1611 pages

 Volume 2 (2016): 2227 pages 

• Chapter 2 and 3
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Rigid Multi-Body Dynamics

Dynamic model

• Generalized coordinates

• Dynamic model: Generalization of f = ma

• Inverse dynamic equations:

 Searched: Best contact forces + actions that are consistent with the 

dynamics

 Can be solved numerically, and analytically [Todorov 14]

𝐱𝑡 = 𝐪𝑡 ሶ𝐪𝑡 =
𝐪𝑡−1 − 𝐪𝑡

2𝛿𝑡
ሷ𝐪𝑡 =

𝐪𝑡−1 − 2𝐪𝑡 + 𝐪𝑡+1
𝛿𝑡2

𝑀 𝐪 ሷ𝐪 + 𝐶 𝐪, ሶ𝐪 ሶ𝐪 = 𝐵𝐮 + 𝐽 𝐪 𝑇𝐟

𝑓−1 𝐱𝑡−1,𝐱𝑡, 𝐱𝑡+𝟏 = arg min
𝐮 𝐟

2
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Rigid Multi-Body Dynamics

Simple example (a particle with a mass)

• Dynamics: 𝐮 − 𝐠 = 𝑚 ሷ𝐱
• Inverse dynamics:

• Costs: 𝐶 𝐱 = 𝐱 2 [particle should stand still]

• Known paramters

initial state: 𝐱0 system parameter: 𝑚 external force: 𝐠
• Optimization unknowns (direct collocation): 𝐱0, … , 𝐱𝑇
• Solution:

States: 𝐱0, … , 𝐱𝑇 = 0 Implicit controls: 𝐮0, … , 𝐮𝑇 = 𝐠

𝑓−1 𝐱𝑡−1,𝐱𝑡, 𝐱𝑡+𝟏 = 𝐮𝐭 =
𝑚 𝐱𝑡−1−2𝐱𝑡+𝐱𝑡+1

𝛿𝑡2
+ 𝐠

state x

action u
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Research Outlook

Optimal control for contact rich motion tasks
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Research Outlook

Optimal Control for contact rich motion tasks
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Outlook

What is wrong with known dynamics?

• Next time: learning the dynamics model



Thanks for your attention!


