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Optimal Control

Closed-Loop vs Open-Loop

Closed-Loop Open-Loop
cu=1u(x) e u=mu(t)

TS T

s\~ Trajectory Optimization

e —

T W e

1 1

~ N e 1 ~ AR AR ARl L A Al R

* In dlscrete cases: Markov-Decision Process

e Local methods and solutions
» Good for high-dimensional problems
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Optimal Control

Problem Formulation: Forward Shooting Method

* Forward shooting method: optimize only over actions
T

min z C(Xt, ut) s.t. Xt = f(xt—l,ut—l)

uq,..,ur
t=1

ul,
Uuq
start x,

A 4

« Sensitive for initial conditions

— Uy, ..., Ug sequence of actions
— c(X¢,up) costs for state x; and actions u;
— f(X¢_q,Up_q) deterministic (forward-)dynamicmodell
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Optimal Control

Problem Formulation: Forward Shooting Method

* Forward shooting method: optimize only over actions
T

min z C(Xt, ut) s.t. Xt = f(xt—l,ut—l)

uq,..,ur

t=1 t

min c(Xq,uy) + c(f(Xg,uy),up) + -+ c(f(f(..) ...),ur)

uq,..,ur
« Each state depends on all previous actions

g - &8 - &

@ - @' @ - @&
« Sensitive for initial conditions
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Optimal Control

Problem Formulation: Collocation
 Collocation method: optimize over states and actions with constraints
T

min z c(X¢, up) st X = f(Xe—1,Ug-1)

uq,..,ur, X1,...XT

t=1
A

— Xq, .., X7 sequence of states

— c(X¢,up) costs for state x; and actions u;

— (X1, Wp_q) deterministic dynamic modell
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Optimal Control

Problem Formulation: Collocation

 Direct collocation method: optimize over states with constraints

T

min z c(Xg,uy) S.t. U1 = f_l(xt—1,xt)

X1, XT
t=1

A 4

 Direct collocation: Alternative Alternative consideration of the general collocation

— Optimizes only over states

— Actions result implicity
— Uses inverses dynamikmodel f~(x,_; x;)
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Optimal Control

Problem Formulation: Collocation

 Direct collocation method: optimize over states with constraints
T

min z c(Xg,uy) S.t. U1 = f_l(xt—1,xt)

X1, XT
t=1

« Each action depends only on neighboured states

g - & & &' &

avevavd

g’ o a'- @

— No instability due to forward integration
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Optimal Control

Forward Shooting vs Direct Collocation

* Forward Shooting
T

min § c(X¢, ue) Xy = [ (Xg-1,U¢-1)
uq,..,ur
. _ t=1
— Optimizes over actions
— State trajectory results implicit
— Dynamics are an implicit constraint (always fulfilled)

* Direct Collocation

T
min Z c(X¢,ug) Ue_g = [ (X1, Xe)
X1, XT
— Optimizes over states t=1
— Action trajectory results implicit
— Dynamics are an explicit constraint (can be “soft”)
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Trajectory Optimization

Problem Formulation: Forward Shooting Method

T

min z c(Xs,uy) s.t. X¢ = f(Xp—1,We—1)

uq,..,ur

t=1
min c(Xq,uy) + c(f(Xg,uy),up) + -+ c(f(f(..) ...),ur)

uq,..,ur
* Uy, .., Up sequence of actions
* c(X¢,uy) costs for state x; and actions u;

* f(X¢—1,u;—1) deterministic (forward-) dynamic m

Summerschool | IMA/ZLW & IfU
12 15.08.2017 | www.ima-zlw-ifu.rwth-aachen.de



Shooting Methode: LQR

Linear Quadratic Regulator

» Special case: Systems with
— Linear dynamics
— Quadratic costs
* LOR provides an exact solution

min c(Xq,uy) + c(f(xXg,uy),up) + -+ c(f(f(...) ...),ur)

ul,".’uT/_J \

fxpuy) =F lﬁi] + f; c(X¢,u;) = % EﬂT C; [ﬁz] + [ﬁZ]T Ct

linear guadratic
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Example: Linear Dynamics

Ball in Zero-Gravity

. . Xt
* Linear dynamics: f(Xsuy) = F; [ut] + f;
N q  of th it ball action:
 (Newton) dynamic of the zero-gravity ball:
( ) y g y / ux, uy
_Xt+1_ —Xt + AtXt + 05 At ux_ .
Yi+1 y: + Aty; + 0.5 At u,, state:
Xer1| — X; + At u, X6, Yo Xe, Ve
_Yt+1_ | yt —+ At lly

1 0 At 0 0.5At 0

}> F |01 0 At 0 0.5 At
1o 0 1 o0 At 0

0 0 0 1 0 At |

Summerschool | IMA/ZLW & IfU
14 15.08.2017 | www.ima-zlw-ifu.rwth-aachen.de



Example: Manipulation

State Space

* In robotics, the state space contains (very) often:
— Joint position and velocity ‘

— Object position and velocity

 Detection of joint states

— Joint encoder are reliable

— Easy
* Perception of object states
— Often a camera is used

— Complicated
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Example: Manipulation

Costs

 Costfunction:
— Costs contain often a distance term ||x; — x*|| and an energy term S||u||

c(xy,ug) = ||x — x| + Bllugl| x" : Targetstate

» Higher weighting of costs in the final time step t =T

c(xr,ur) = 2(llxr —x*{| + Bllur|)

« For manipulation tasks, x* usually contains:
— Target pose of end effector
— Target pose of object
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Linear Quadratic Regulator

Definition

umir&TC(Xl,ul) +c(f(xpuy),up) + -+ c(f(f(.) ) up)

1y
1xqT | X X7
C(th ut) - E [utl Ct lut] + [utl Ct
X

f&xeu) =F, [ui] + 1

Terminology:

* Q(x;,u;): expected cost-to-go from state x, and with action u;

* V(x¢) . expected cost-to-go from state x;

V(%) = min Q(x;, 1)
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Linear Quadratic Regulator

Backward Propagation xr (unknown)

uq,..,ur

min c(xy,uy) +c(f(x,up),uy) + -+ + c(]!f(f(...) ...\),uT)

/

1xqT | X X7
c(Xp,up) = 5 [utl C; [ut] + [ut] C; (C))nnly teorrr]r|1ythat depends
ur

fxpu) =F lﬁi] + f;

« Backward Propagation
— Start at u; (base case)
— Backward calculation of the actions ur_; ...ug
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Linear Quadratic Regulator

Backward Propagation: Calculate u; (base case)

* Costsintimestept =T Cost matrices in
1 ixonT X - last timestep
Q(xp,ugp) = const + — luT] Cr luT] + [uT] Cr C C
2 Lur T T C.. — [ XT,XT xT,uT]
= |C C
- Action with minimal costs: UrXT unur
C
— T _ _ | XT
VuTQ(XT; uT) - CllT,XTXT + CllT,llTuT + CllT =0 Cr = [CuT]
_ -1
» Ur = _CUT,UT(CUT,XTXT + CuT)

u; = Krx; + ks [Linear-Feedback Policy]

_ -1

Kr = _CuT,uT C“T:XT
— -1

kr = —CururCuy
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Linear Quadratic Regulator

Backward Propagation: Calculate V(xr) (base case)

Goal: Eliminate uz in Q(x¢,u;)
Remember: V(x;) = min Q(x;, u;)
U

Get V' (x;) through substitution of optimal action u; in Q(x;, u;)

1
V(xr) = const+ 5 2 KTXT + kT] Cr KTXT + kT] [KTXT + kT] Cr

Use of costs in V(x;)
1
V(XT) = EX%:CXT:XT + EXTCXT ur

+xTKECy K + = x?C

1
xr + =xTKILC

2 ur,ur

1 T
Kyxr +=xLKEC

2 ur,Xr

kr + x7¢y, + X7K7Cy, + const

Krxr

ur,ur Xt,ur

1
EX%:VTXT + xTvy  [cost-to-go as a function of the final state]

+C

V(xy) = const +

Vr = Cypxp Ky + KLC, o.X7 + KECy.. . Kr

VT — K"I]:C

ur, Xt ur,ur

kT + CXT + KTCuT

XT,ur

k; + C

ur,ur XT,ur
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Linear Quadratic Regulator

Backward Propagation: Timestep T-1

* Now: Solve u;_; in dependence of x;_4
°* Ur—q affeCt Xt

fXr_p,ur_q) =Xy =Fr_4 [ ] +fr_4

Ur_q

Z[UT 1] i(l; ﬂ [ﬁ; ﬂ cr—1 +V({f(Xr-1,ur_1))

A

Q(xXp_q,ur_q) = const +

1 \
V(xT) = const + =xLVrx7 + XLy

 Eliminate x (cf. cost-to-go) through dynamic model 2

T
X711

V(x;) =const+%lﬁ§:ﬂT FX_,V,Fr_, luT 1] luT—l] F$_1VTfT_1+[ ] FL_ v,..
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Linear Quadratic Regulator

Backward Propagation: Timestep T-1

T

XT-1 X111
Q(Xr_q,ur_1) = const + = ] T-1

l Xr_117
2 lur—q Ur_q

] + uT—ll cr—q +V(X7)

T
XT-1

T T

T—1 ] T XT-1 T
FI_yVefr_y + [0 FEqvr..

up_q| “T-Vrir-1 7T |y, | Yr-aVr

V(xr) = const + = [“T 1] FTT_1VTFT—1 up_ 1] [

« Substitution of quadratic and linear terms:

1xr_11"

Q(XT—1;UT—1) = const + E luT—l] Qr_4 le—l] [XT 1

Ur_q Ur_ 1] dr-1

Qr_1 =Cr_q +F{_;VrFr_y

Qr-1 = Cr—q + F{_Vefr_1 + F{_ vyp
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Linear Quadratic Regulator

Backward Propagation: Calculate uy_; ...u,

* Action with minimal costs

_ T  _
VuT_lQ(XT—lruT—l) = Qup_y xr_ X7-1 ¥ Quy_up_Ur—1+Quy_, =0

ury_; = Kr_1x7_1 + Ky_; [Linear-Feedback Policy]

— -1
Kr_q = _QUT—1,UT—1 QuT—l»XT—l

— -1
Ky = _Q“T—1,UT—1 Qur_,

 Are there any questions?
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Linear Quadratic Regulator

Pseudocode Algorithm

Backward recursion 00 = KigoX100 + koo

(Get linear equations for u)

fort = Tto1l: B
Q =C; +F V. F
qr = ¢ + F/ Ve fy + Flveyg we know x 0

. 1 [X¢ T Xt Xt T
Q(x;,u;) = const + > [ut] Q; [ut] + [ut] q: .
Forward recursion

Uy < arg rrlllitn Q(x¢,up) =KXy + K¢ (Use known initial state to get
K, = — Ql—ltl,llt Qu,x, values for u)

k; = —Qﬂtl,ut%t fort =1toT:

Ve = th,xt + th,uth + K{Qut,xtxt + K{Qut,uth u, = Kex; + kg

Ve = K{Qut,utkt + th,utkt +qx, + K{qut Xt41 = f(Xt,ut)

1
V(x;) = const + Efotxt + xTv,
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Linear Quadratic Regulator

Stochastic Dynamic

« With Gaussian dynamics

Xt
f&xpuy) =F lutl +f;
Xer1 ~ P(Xes1]Xe, Ug)

X
P(Xer1lxe up) = N (F [uz] + 1, 2p)

« Solution: Choose actions according to u; = K;x; + Kk;

* Nothing changes at the algorithm! Can ignore X; due to symmetry of Gaussians
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Non-linear System: DDP/iterativer LQR

Approach

* So far: linear-quadratic assumptions

f(xs,up) =F [ﬁi] + f, [dynamic]

ctxoue) =7 0] € [5] + [5] e [cosis]

« Can we approximate a nonlinear system as a linear-quadratic system?

— Yes, we can! Taylor series expansion of the dynamics and the costs
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Iterative Linear Quadratic Regulator (i-LQR)

Nonlinear dynamics and costs: iterative approximation
* First order taylor expansion of the dynamics at trajectory x;, ti;,t =1...T

f(xt' ut) = f(xt; ut) + VXt,utf(Xt’ ut) [u::: — ﬁi]

« Second order taylor expansion of the costs at trajectory X;,tl;,t =1...T

T

— S 0N S o Xt_ﬁt 1 Xt_it 2 a8 o Xt_ﬁt
C(Xt, llt) —_ C(Xt, llt) + th,utC(Xt, ut) [ut _ 'i\l,t] + E [ut _ i\lt] + th’utC(Xt, ut) [ut _ 'i\l,
~ o [ox¢ _ _ 6xt] 5xt] [5xt]
f(6%xs,6u.) = F 5ut] c(6x¢, 0u,) = [5 5“t
o
th,utf(ﬁt; ﬁt) szt’utC(xt, ut) th’utC(Xt, ﬁt)

Now we can run LQR with dynamics f, cost ¢, state 6x, = x, — £, and action u, = x, — %,
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Iterative Linear Quadratic Regulator (i-LQR)

Pseudocode

* Initialize:
— X, Is given
— Choose random sequence of actions uj ... Uy
— Calculate (using dynamic model) sequence of states X, ... Xt

until convergence:

Fi = Vi, u, f (&, 1) Ve Linear approximation at X, u

ct = Vx,u,c(Xt,0y) VI Solve du,,t =1..T, so that Gi; + du; minimizes
C, = Vit,ufc‘(it, AR the linear approximation

Run LQR backward pass on state dx; = x; — %X; and action du; = uy — 0y Vi
Run forward pass with real nonlinear dynamics anddu; = s + K t(ﬂft — §3T) + Kk VYt
Update x; and u; based on states and actions in forward pass V¢

Update step: X; = X; + 6x; and iy = iy + Su;
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Iterative Linear Quadratic Regulator (i-LQR)

Newtonmethod

* Why does this work? i-LQR is similar to Newton method:

min c(Xq,u1) + c(f (X, ug),uy) + -+ c(f(f(...) ...),ur)

uq,..,ur
Compare to Newton’s method for computing miny g(x):

until convergence:
g = ng(i)

. Approximate g(x) with gradient and hessian matrix
H = V3g(x) }

1
X < arg min E(X —3)THx-%)+gl (x - 5&)} Minimize quadratic function
X

- ILQR is the same idea: locally approximate a complex nonlinear function via Taylor expansion

- What would the iLQR look like if the Newton method was implemented exactly?
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Differential Dynamic Programming

Newton method for trajectory optimization

» To get Newton’s method, need to use second order dynamics approximation

OX;

P R 1 ~ o~ [0X:]) [O0X¢
f&eue) ~ fReUp) + Vyu f Re, Be) [5ut] T2 (szt'utf R Ue) lautD aut]

* Is referred to as differential dynamic programming

* For reading: Jacobson and Maye, “Differential dynamic programming”, 1970
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Nonlinear dynamics: DDP/i-LQR

Problem R

* Analog to the Newton method

1
X < arg min E(X —%)TH(x - %) + g’ (x — %)

* Why is this a bad idea?

* Improved iLQR:
until convergence:

F, = X, U i
t = Vi, u f(Xe, 0) Search over «a until

¢t = Vx, u,c(X¢, 0y) improvement achieved (Line-
Lo Search
Ct = V}Qct,ut C(Xt, llt) )

Run LQR backward pass on state dx; = x; — x4 and action du; = u; — U
Run forward pass with real nonlinear dynamics andéu; = 4 + K¢(xy — Z7) + aky
Update x; and 0; based on states and actions in forward pass
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Nonlinear dynamics: DDP/i-LQR

Further Reading

* Mayne, Jacobson (1970). Differential Dynamic Programming
— Original algorithm

» Tassa, Yuval, Tom Erez, and Emanuel Todorov (2012). Synthesis and stabilization of complex behaviors through online

trajectory optimization.
— Practical implementation notes for the nonlinear iLQR

* Levine, S., & Abbeel, P. (2014). Learning neural network policies with guided policy search under unknown dynamics.
— Probabilistic formularization of Line Search to get the stepsize a
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Nonlinear dynamics: DDP/i-LQR

Summary DDP/i-LQR

Plan a sequence of actions (i.e. for 100 timesteps)

“Hope that the dynamic model is precise enough”

If it converges: linearized (timedependent) trajectory u; = K;x; + k;

In practice: Often the system is not on this trajectory (i.e. x, is wrong, dynamic model is wrong)

Are there strategies that deals with this noise?
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Nonlinear dynamics: DDP/i-LQR

Modelpredictive Control
* Yes! If we close the loop! = Modelpredictive Control

 Solution: In timestep t use ILQR/DDP for the upcoming timestepstto T

every time step:
observe the state x;

. . t+T
use iLQR to plan uy,...,ur to minimize Z;L:t c(Xy, uy)

execute action uy,
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Modelpredictive Control: When does it work?

36
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Synthesis of Complex Behaviors
with
Online Trajectory Optimization

Yuval Tassa, Tom Erez & Emo Todorov

IEEE International Conference

on Intelligent Robots and Systems
2012




Nonlinear dynamics: DDP/i-LQR

When does DDP/i-LQR work?
Cost: ||z — 27|

x

x
5_/ Direction for minimizing the cost

‘ Lt
-
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Nichtlineare Dynamik: DDP/i-LQR

When does DDP/i-LQR not work?

Cost: ||z — =™

 Local search does not find a solution in complex contact situations!

» Solution: Initialize trajectory with the help of a human demonstration (instead of random)
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Optimal Control

Forward Shooting vs Direct Collocation

* Forward Shooting
T

min § c(X¢, ue) Xy = [ (Xg-1,U¢-1)
uq,..,ur
. _ t=1
— Optimizes over actions
— State trajectory results implicit
— Dynamics are an implicit constraint (always fulfilled)

* Direct Collocation

T :
_ w Inverse dynamic

xfr.l.l.I;Tz c(X¢, u) Uy =7 (Xe-1.X¢) model: How to get it?

— Optimizes over states t=1

— Action trajectory results implicit

— Dynamics are an explicit constraint (can be “soft”)
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Dynamic model

Inverse dynamic model

g = (Xeo1 X¢)

 Describes what controls and forces you apply when transitioning from x;_; zu x;

& - &' & & &
L
@

avavevd

@ - a ! a (D

— Training data
" Input Xt—l’xt
= Target Output: u;_4

* For rigid multi-body dynamics, we can do better when we know system parameters (most
robots)
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Rigid Multi-Body Dynamics

Dynamic model

—1 5 +1
* Generalized coordinates @ @ @
. . . Qi1 — 29 + Q41 \l/

Xt = (¢ d¢ 25t qde = 5¢2

 Calculate velocities and accelerations from nearby states

* Dynamics equation: Generalization of f = ma

M(Q)q+ C(q,q)q = Bu+J(q)'f

—M(q) und C(q,q) Mass and Coriolis Matrices _—
— B Actuation Matrix (Diagonal matrix: 1 for <= <2
controllable DoF, O if not controllable)
—f Constraint forces (i.e. 3D contact forces)
B . : : /
J(q) Jacobimatrix that maps f on the generalized <2

coordinates
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Rigid Multi-Body Dynamics

Further reading

« Springer Handbook of Robotics
—Volume 1 (2008): 1611 pages
—Volume 2 (2016): 2227 pages

« Chapter 2 and 3
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Rigid Multi-Body Dynamics

Dynamic model

* Generalized coordinates @—1 @‘ ®+1

_ . Q¢-1— Q¢ . Q-1 29 T Qe \l/
Xt = ¢ de = qe = 5¢2 @

20t

* Dynamic model: Generalization of f = ma

M(@)q +C(q,4)q = Bu +](q)Tf)
f
* Inverse dynamic equations: \

f_l(xt—1,xt»xt+1) = arg rfninll |2
u

— Searched: Best contact forces + actions that are consistent with the
dynamics

— Can be solved numerically, and analytically [Todorov 14]
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Rigid Multi-Body Dynamics

Simple example (a particle with a mass)

Dynamics: u — g = mX

Inverse dynamics: action u

Mm(Xe—1—2X¢+X¢+1) +g /

fH(Xe—1,Xe Xep1) = U = 5.2 ®
 Costs: C(x) = ||x]|? [particle should stand still] state x
* Known paramters
initial state: x, system parameter: m external force: g
« Optimization unknowns (direct collocation): x, ..., Xt
* Solution:
States: Xy, ..., X7 =0 Implicit controls: wug,..,ur =g

& - @ & &' - &

o - g o o
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Research Outlook

Optimal control for contact rich motion tasks

Optimization Progress
Stage 1
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Research Outlook

Optimal Control for contact rich motion tasks

\
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Outlook

What is wrong with known dynamics?

* Next time: learning the dynamics model
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